$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수온 상승에 따른 게바다말의 광합성 및 호흡률 변화
Photosynthetic and respiratory responses of the surfgrass, Phyllospadix japonicus, to the rising water temperature 원문보기

환경생물 = Korean journal of environmental biology, v.40 no.3, 2022년, pp.352 - 362  

김혜광 (부산대학교 생명과학과) ,  김종협 ((주)비티알에스) ,  김승현 (부산대학교 생명과학과) ,  (부산대학교 생명과학과) ,  이근섭 (부산대학교 생명과학과)

초록
AI-Helper 아이콘AI-Helper

우리나라 동해와 남해 연안에 주로 분포하는 게바다말의 수온 상승에 따른 탄소수지 변화를 예측하기 위하여 5℃에서 30℃까지의 수온에서 5℃ 간격으로 광합성과 호흡률을 측정하였다. 광합성 매개변수 중 광합성 효율(α)을 제외한 최대광합성률(Pmax)과 보상광도(Ic), 포화광도(Ik)가 수온이 상승함에 따라 증가하였으며, 호흡률(R) 또한 수온 상승에 따라 증가하였다. 가장 높은 수온(30℃)에서 Pmax와 Ik는 급격히 감소하였으나, 반면에 Ic와 호흡률은 지속적으로 증가하였다. Pmax :R ratio는 가장 높은 수온(30℃)에서 최소값을, 가장 낮은 수온(5℃)에서 최대값을 보였다. 이러한 결과를 토대로 게바다말이 양의 탄소수지를 유지하기 위해 필요한 일일 포화광도 시간(Hsat)을 계산한 결과, 5℃에서는 2.50시간 이상, 30℃에서는 10.61시간 이상이 요구되어, 수온이 상승할수록 더 많은 시간의 포화광도(Hsat)가 요구되는 것으로 나타났다. 따라서 수온이 꾸준히 상승되어 여름철 고수온이 장기간 지속되면 우리 연안 게바다말 생육지의 분포에 부정적인 영향을 미칠 것으로 판단되었다.

Abstract AI-Helper 아이콘AI-Helper

Photosynthesis and respiration of seagrasses are mainly controlled by water temperature. In this study, the photosynthetic physiology and respiratory changes of the Asian surfgrass Phyllospadix japonicus, which is mainly distributed on the eastern and southern coasts of Korea, were investigated in r...

주제어

참고문헌 (47)

  1. Abe M, A Kurashima and M Maegawa. 2008. High water-temperature tolerance in photosynthetic activity of Zostera?marina seedlings from Ise Bay, Mie Prefecture, central Japan. Fish. Sci. 74:1017-1023. https://doi.org/10.1111/j.1444-2906.2008.01619.x? 

  2. Beca-Carretero P, T Azcarate-Garcia, M Julia-Miralles, CS Stanschewski, F Guiheneuf and DB Stengel. 2021. Seasonal?acclimation modulates the impacts of simulated warming?and light reduction on temperate seagrass productivity and?biochemical composition. Front. Mar. Sci. 8:731152. https://doi.org/10.3389/fmars.2021.731152? 

  3. Bertelli CM and RKF Unsworth. 2014. Protecting the hand that?feeds us: Seagrass (Zostera marina) serves as commercial?juvenile fish habitat. Mar. Pollut. Bull. 83:425-429. https://doi.org/10.1016/j.marpolbul.2013.08.011? 

  4. Bulthuis DA. 1987. Effects of temperature on photosynthesis?and growth of seagrasses. Aquat. Bot. 27:27-40. https://doi.org/10.1016/0304-3770(87)90084-2? 

  5. Cha EJ, M Kimoto, EJ Lee and JG Jhun. 2007. The recent increase in the heavy rainfall events in August over the Korean?Peninsula. J. Korean. Earth Sci. Soc. 28:585-597. https://doi.org/10.5467/JKESS.2007.28.5.585? 

  6. Choi SK, YH Kang and SR Park. 2020. Growth responses of kelp?species Ecklonia cava to different temperatures and nitrogen?sources. Korean J. Environ. Biol. 38:404-415. https://doi.org/10.11626/KJEB.2020.38.3.404? 

  7. Christianen MJA, J van Belzen, PMJ Herman, MM van Katwijk,?LPM Lamers, PJM van Leent and TJ Bouma. 2013. Low-canopy seagrass beds still provide important coastal protection?services. PLoS One 8:e62413. https://doi.org/10.1371/journal.pone.0062413? 

  8. Collier CJ and M Waycott. 2014. Temperature extremes reduce?seagrass growth and induce mortality. Mar. Pollut. Bull. 83:483-490. https://doi.org/10.1016/j.marpolbul.2014.03.050? 

  9. Collier CJ, YX Ow, L Langlois, S Uthicke, CL Johansson, KR?O'Brien, V Hrebien and MP Adams. 2017. Optimum temperatures for net primary productivity of three tropical seagrass?species. Front. Plant Sci. 8:1446. https://doi.org/10.3389/fpls.2017.01446? 

  10. De los Santos CB, I Olive, M Moreira, A Silva, C Freitas, R Araujo?Luna, H Quental-Ferreira, M Martins, MM Costa, J Silva, ME?Cunha, F Soares, P Pousap-Ferreira and R Santos. 2020. Seagrass meadows improve inflowing water quality in aquaculture ponds. Aquaculture 528:735502. https://doi.org/10.1016/j.aquaculture.2020.735502? 

  11. Dennison WC, RJ Orth, KA Moore, JC Stevenson, V Carter, S?Kollar, PW Bergstrom and RA Batiuk. 1993. Assessing water quality with submersed aquatic vegetation. Bioscience?43:86-94. https://doi.org/10.2307/1311969? 

  12. Erftemeijer PLA and RRR Lewis. 2006. Environmental impacts of?dredging on seagrasses: A review. Mar. Pollut. Bull. 52:1553-1572. https://doi.org/10.1016/j.marpolbul.2006.09.006? 

  13. Fourqurean JW and JC Zieman. 1991. Photosynthesis, respiration and whole plant carbon budget of the seagrass Thalassia testudinum. Mar. Ecol. Prog. Ser. 69:161-170.? 

  14. Green EP and FT Short. 2003. World Atlas of Seagrasses. University of California Press. Berkeley, CA. 

  15. Grice AM, NR Loneragan and WC Dennison. 1996. Light intensity and the interactions between physiology, morphology?and stable isotope ratios in five species of seagrass. J. Exp.?Mar. Biol. Ecol. 195:91-110. https://doi.org/10.1016/0022-0981(95)00096-8? 

  16. Hammer KJ, J Borum, H Hasler-Sheetal, EC Shields, K Sand-Jensen and KA Moore. 2018. High temperatures cause?reduced growth, plant death and metabolic changes in eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 604:121-132.?https://doi.org/10.3354/meps12740? 

  17. Hemminga MA and CM Duarte. 2000. Seagrass Ecology. Cambridge University Press. Cambridge, UK.? 

  18. Hosack GR, BR Dumbauld, JL Ruesink and DA Armstrong. 2006.?Habitat associations of estuarine species: Comparisons?of intertidal mudflat, seagrass (Zostera marina), and oyster?(Crassostrea gigas) habitats. Estuaries Coasts 29:1150-1160.?https://doi.org/10.1007/BF02781816? 

  19. Hyun JH, KS Choi, KS Lee, SH Lee, YK Kim and CK Kang. 2020.?Climate change and anthropogenic impact around the Korean coastal ecosystems: Korean Long-term Marine Ecological?Research (K-LTMER). Estuaries Coasts 43:441-448. https://doi.org/10.1007/s12237-020-00711-6? 

  20. IPCC. 2021. Climate Change 2021: The Physical Science Basis.?Contribution of Working Group I to the Sixth Assessment?Report of the Intergovernmental Panel on Climate Change?(Masson-Delmotte V et al., eds.). Cambridge University?Press. Cambridge and New York.? 

  21. Jassby AD and T Platt. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21:540-547. https://doi.org/10.4319/lo.1976.21.4.0540? 

  22. Kendrick GA, RJ Nowicki, YS Olsen, S Strydom, MW Fraser, EA?Sinclair, J Statton, RK Hovey, JA Thomson, DA Burkholder,?KM McMahon, K Kilminster, Y Hetzel, JW Fourqurean, MR?Heithaus and RJ Orth. 2019. A systematic review of how multiple stressors from an extreme event drove ecosystem-wide?loss of resilience in an iconic seagrass community. Front.?Mar. Sci. 6:455. https://doi.org/10.3389/fmars.2019.00455? 

  23. Kim JH, JH Kim, GY Kim and JI Park. 2018. Growth dynamics?of the surfgrass, Phyllospadix iwatensis on the eastern?coast of Korea. The Sea 23:192-203. https://doi.org/10.7850/jkso.2018.23.4.192? 

  24. Kim SH, JH Kim, SR Park and KS Lee. 2014. Annual and perennial life history strategies of Zostera marina populations?under different light regimes. Mar. Ecol. Prog. Ser. 509:1-13.?https://doi.org/10.3354/meps10899? 

  25. Lee KS and KH Dunton. 1999. Inorganic nitrogen acquisition?in the seagrass Thalassia testudinum: Development of a?whole-plant nitrogen budget. Limnol. Oceanogr. 44:1204-1215. https://doi.org/10.4319/lo.1999.44.5.1204? 

  26. Lee KS, JI Park, YK Kim, SR Park and JH Kim. 2007a. Recolonization of Zostera marina following destruction caused by a?red tide algal bloom: The role of new shoot recruitment from?seed banks. Mar. Ecol. Prog. Ser. 342:105-115. https://doi.org/10.3354/meps342105? 

  27. Lee KS, SR Park and JB Kim. 2005. Production dynamics of the?eelgrass, Zostera marina in two bay systems on the south?coast of the Korean peninsula. Mar. Biol. 147:1091-1108.?https://doi.org/10.1007/s00227-005-0011-8? 

  28. Lee KS, SR Park and YK Kim. 2007b. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses:?A review. J. Exp. Mar. Biol. Ecol. 350:144-175. https://doi.org/10.1016/j.jembe.2007.06.016? 

  29. Marsh JA, WC Dennison and RS Alberte. 1986. Effects of temperature on photosynthesis and respiration in eelgrass (Zostera marina L.). J. Exp. Mar. Biol. Ecol. 101:257-267. https://doi.org/10.1016/0022-0981(86)90267-4? 

  30. Mcleod E, GL Chmura, S Bouillon, R Salm, M Bjork, CM Duarte,?CE Lovelock, WH Schlesinger and BR Silliman. 2011. A blueprint for blue carbon: toward an improved understanding of?the role of vegetated coastal habitats in sequestering CO 2 .?Front. Ecol. Environ. 9:552-560. https://doi.org/10.1890/110004? 

  31. Nordlund LM, EW Koch, EB Barbier and JC Creed. 2017. Correction: Seagrass ecosystem services and their variability across?genera and geographical regions. PLoS One 12:e0169942.?https://doi.org/10.1371/journal.pone.0169942? 

  32. Park JI and KS Lee. 2009. Peculiar growth dynamics of the surf-grass Phyllospadix japonicus on the southeastern coast of?Korea. Mar. Biol. 156:2221-2233. https://doi.org/10.1007/s00227-009-1250-x? 

  33. Park JI, JH Kim, JH Kim and MS Kim. 2019. Growth dynamics of?the surfgrass, Phyllospadix Japonicus on the southeastern?coast of Korea. The Sea 24:548-561. https://doi.org/10.7850/jkso.2019.24.4.548? 

  34. Park JI, KS Lee and MH Son. 2012. Germination rate of Zostera?marina and Phyllospadix japonicus related to environmental?factors. Korean J. Environ. Biol. 30:280-285.? 

  35. Qin LZ, SH Kim, HJ Song, HG Kim, Z Suonan, O Kwon, YK Kim,?SR Park, JI Park and KS Lee. 2020a. Long-term variability?in the flowering phenology and intensity of the temperate seagrass Zostera marina in response to regional sea?warming. Ecol. Indic. 119:106821. https://doi.org/10.1016/j.ecolind.2020.106821? 

  36. Qin LZ, SH Kim, HJ Song, Z Suonan, H Kim, O Kwon and KS?Lee. 2020b. Influence of regional water temperature variability on the flowering phenology and sexual reproduction of the?seagrass Zostera marina in Korean coastal waters. Estuaries?Coasts 43:449-462. https://doi.org/10.1007/s12237-019-00569-3? 

  37. Ralph PJ, MJ Durako, S Enriquez, CJ Collier and MA Doblin. 2007. Impact of light limitation on seagrasses. J. Exp.?Mar. Biol. Ecol. 350:176-193. https://doi.org/10.1016/j.jembe.2007.06.017? 

  38. Rasmusson LM, P Buapet, R George, M Gullstrom, PCB Gunnarsson and M Bjork. 2020. Effects of temperature and?hypoxia on respiration, photorespiration, and photosynthesis?of seagrass leaves from contrasting temperature regimes.?ICES J. Mar. Sci. 77:2056-2065. https://doi.org/10.1093/icesjms/fsaa093? 

  39. Short F, T Carruthers, W Dennison and M Waycott. 2007. Global?seagrass distribution and diversity: A bioregional model. J.?Exp. Mar. Biol. Ecol. 350:3-20. https://doi.org/10.1016/j.jembe.2007.06.012? 

  40. Smale DA, T Wernberg, ECJ Oliver, M Thomsen, BP Harvey, SC?Straub, MT Burrows, LV Alexander, JA Benthuysen, MG?Donat, M Feng, AJ Hobday, NJ Holbrook, SE Perkins-Kirkpatrick, HA Scannell, AS Gupta, BL Payne and PJ Moore.?2019. Marine heatwaves threaten global biodiversity and the?provision of ecosystem services. Nat. Clim. Chang. 9:306-312. https://doi.org/10.1038/s41558-019-0412-1? 

  41. Smith KE, MT Burrows, AJ Hobday, A Sen Gupta, PJ Moore, M?Thomsen, T Wernberg and DA Smale. 2021. Socioeconomic?impacts of marine heatwaves: Global issues and opportunities. Science 374:eabj3593. https://doi.org/10.1126/science.abj3593? 

  42. Strydom S, K Murray, S Wilson, B Huntley, M Rule, M Heithaus,?C Bessey, GA Kendrick, D Burkholder, MW Fraser and K?Zdunic. 2020. Too hot to handle: Unprecedented seagrass?death driven by marine heatwave in a World Heritage Area.?Glob. Change Biol. 26:3525-3538. https://doi.org/10.1111/gcb.15065? 

  43. Valentine JF and KL Heck. 2021. Herbivory in seagrass meadows: an evolving paradigm. Estuaries Coasts 44:491-505.?https://doi.org/10.1007/s12237-020-00849-3? 

  44. Van Keulen M and MA Borowitzka. 2003. Seasonal variability in?sediment distribution along an exposure gradient in a seagrass meadow in Shoalwater Bay, Western Australia. Estuar.?Coast. Shelf Sci. 57:587-592. https://doi.org/10.1016/S0272-7714(02)00394-3? 

  45. Walter RK, JK O'Leary, S Vitousek, M Taherkhani, C Geraghty and?A Kitajima. 2020. Large-scale erosion driven by intertidal eelgrass loss in an estuarine environment. Estuar. Coast. Shelf?Sci. 243:106910. https://doi.org/10.1016/j.ecss.2020.106910? 

  46. Whitfield AK. 2017. The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food?sources for fishes in estuaries. Rev. Fish Biol. Fish. 27:75-110. https://doi.org/10.1007/s11160-016-9454-x? 

  47. Zimmerman RC, A Cabello-Pasini and RS Alberte. 1994. Modeling daily production of aquatic macrophytes from irradiance?measurements: A comparative analysis. Mar. Ecol. Prog. Ser.?114:185-196.? 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로