$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 지하수 중 카드뮴 저감 방안에 대한 고찰
Review on the Remediation Method for Groundwater Contaminated with Cadmium 원문보기

지하수토양환경 = Journal of soil and groundwater environment, v.27 no.4, 2022년, pp.22 - 36  

권종범 (국립환경과학원) ,  박선화 (국립환경과학원) ,  김덕현 (국립환경과학원) ,  윤종현 (국립환경과학원) ,  최현희 (국립환경과학원) ,  김문수 (국립환경과학원) ,  김영 (고려대학교 환경시스템공학과) ,  신선경 (국립환경과학원) ,  김현구 (국립환경과학원)

Abstract AI-Helper 아이콘AI-Helper

Cadmium is a class 1 carcinogen classified by the International Agency for Research on Cancer (IARC) and has a high potential for leaching into groundwater. Therefore, it is necessary to address cadmium contamination by employing adequate treatment methodologies. Although various methods have been s...

주제어

표/그림 (10)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 하지만 대부분의 총설 논문에서는 다양한 종류의 저감방법 기작과 적용 방법 등에 대한 사실만을 검토할 뿐 실제 현장에서 적용하는 방식에 대한 논의가 부족하다. 따라서 본 연구를 통해 선정된 카드뮴 저감방법을 활용하여 현장에 적용할 수 있는 단계적 접근방법에 대한 예시를 언급하고자 한다.
  • 하지만 대규모 저감 공정은 부지 활용, 교통 등의 문제가 있을 경우 적용하기 어려워 지하수 중 카드뮴이 고농도로 오염되어 있을 경우 원위치 지하수 저감 방법이 적용 대안이 될 수 있다. 따라서 본 연구에서는 지하수 중 카드뮴 저감을 위한 물리적, 화학적 생물학적 방법을 검토하기 위해 문헌조사를 수행하였다. 이후 카드뮴 오염현장에서 적용 가능한 저감방법을 선정하기 위해 저감방법의 제거효율 및 흡착능력 등을 평가한 연구와 경제성을 평가하여 카드뮴 오염 지하수를 관리하기 위한 단계적 적용방안을 제시하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (92)

  1. Ali Redha, A., 2020, Removal of heavy metals from aqueous media by biosorption, A. J. Bas. Appl. Sci., 27(1), 183-193. 

  2. Amonette, J., Szecsody, J., Schaef, H., Gorby, Y., Fruchter, J. and Templeton, J., 1994, Abiotic Reduction of Aquifer Materials by Dithionite: A Promising In-situ Remediation Technology, Pacific Northwest Lab. 

  3. Amos, P.W. and Younger, P.L., 2003, Substrate characterisation for a subsurface reactive barrier to treat colliery spoil leachate, W. Re., 37(1), 108-120. 

  4. Angelov, A. and Georgiev, P., 1998, In situ Treatment of Groundwater at Burgas Copper Mines, Bulgaria, by Enhancing Microbial Sulphate Reduction, p. 249, IAHS Press. 

  5. Baker, H.M., Massadeh, A.M., and Younes, H.A., 2009, Natural Jordanian zeolite: removal of heavy metal ions from water samples using column and batch methods, Envi. moni. assess., 157(1), 319-330. 

  6. Bashir, A., Malik, L.A., Ahad, S., Manzoor, T., Bhat, M.A., Dar, G., and Pandith, A.H., 2019, Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods, Envi. Chemi. Letter., 17(2), 729-754. 

  7. Benguella, B. and Benaissa, H., 2002, Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies, W. Re., 36(10), 2463-2474. 

  8. Benner, S., Blowes, D.W., Gould, W.D., Herbert, R.B., and Ptacek, C.J., 1999, Geochemistry of a permeable reactive barrier for metals and acid mine drainage, Envi. Sci. & Tech., 33(16), 2793-2799. 

  9. Bewley, R., 2007, Treatment of chromium contamination and chromium ore processing residue, Tech. Bulletin., 14. 

  10. Bhatnagar, A. and Sillanpaa, M., 2009, Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater-a short review, Advan. Inter. Science., 152(1-2), 26-38. 

  11. Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., and Gupta, V.K., 2018, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review, Ecotoxic. Envi. Safety., 148, 702-712. 

  12. Caccin, M., Giacobbo, F., Da Ros, M., Besozzi, L., and Mariani, M., 2013, Adsorption of uranium, cesium and strontium onto coconut shell activated carbon, J. Radi. Nu. Chemi., 297(1), 9-18. 

  13. Canty, M., 2000, Innovative in situ treatment of acid mine drainage using sulfate-reducing bacteria, Fifth International Conference on Acid Rock Drainage (ICARD) Proceedings, 2, pp. 1139-1148. 

  14. Clifford, D., Subramonian, S., and Sorg, T.J., 1986, Water treatment processes. III. Removing dissolved inorganic contaminants from water, Environ. Sci. Tech., 20(11), 1072-1080. 

  15. Colombani, N., Gervasio, M.P., Castaldelli, G., and Mastrocicco, M., 2020, Soil conditioners effects on hydraulic properties, leaching processes and denitrification on a silty-clay soil, Sci. Envi., 733, 139342. 

  16. Dong, X., Ma, L.Q., and Li, Y., 2011, Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing, J. Hazard. Mater., 190(1-3), 909-915. 

  17. Egirani, D., Poyi, N., and Shehata, N., 2020, Preparation and characterization of powdered and granular activated carbon from Palmae biomass for cadmium removal, Envi. Sci. & Tech., 17(4), 2443-2454. 

  18. Erto, A., Lancia, A., Bortone, I., Di Nardo, A., Di Natale, M., and Musmarra, D., 2011, A procedure to design a Permeable Adsorptive Barrier (PAB) for contaminated groundwater remediation, J. Envi. Manage., 92(1), 23-30. 

  19. Falciglia, P.P., Gagliano, E., Brancato, V., Malandrino, G., Finocchiaro, G., Catalfo, A., De Guidi, G., Romano, S., Roccaro, P., and Vagliasindi, F.G., 2020, Microwave based regenerating permeable reactive barriers (MW-PRBs): proof of concept and application for Cs removal, Chemo., 251, 126582. 

  20. Fine, P., Scagnossi, A., Chen, Y., and Mingelgrin, U., 2005, Practical and mechanistic aspects of the removal of cadmium from aqueous systems using peat, Envi. Pollu., 138(2), 358-367. 

  21. Frindte, K., Allgaier, M., Grossart, H.-P., and Eckert, W., 2015, Microbial response to experimentally controlled redox transitions at the sediment water interface, PLoS One, 10(11), e0143428. 

  22. Fruchter, J., Cole, C., and Williams, M., 1997, Creation of a Subsurface Permeable Treatment Barrier Using In situ Redox Manipulation, US Department of Energy (USDOE), Washington DC (United States). 

  23. Geets, J., Diels, L., Geert, K.V., Brummeler, E.T., Broek, P.v.d., Ghyoot, W., Feyaerts, K., and Gevaerts, W., 2003, Proceedings Consoil 2003, Place, Published. 

  24. Ghaeminia, M. and Mokhtarani, N., 2018, Remediation of nitrate-contaminated groundwater by PRB-Electrokinetic integrated process, J. Envi. Manage., 222, 234-241. 

  25. Hanumantha Rao, B. and Gangadhara Reddy, N., 2017, Geoenvironmental Practices and Sustainability, pp. 69-89, Springer. 

  26. Hasan, S., Krishnaiah, A., Ghosh, T.K., Viswanath, D.S., Boddu, V.M., and Smith, E.D., 2006, Adsorption of divalent cadmium (Cd (II)) from aqueous solutions onto chitosan-coated perlite beads, Ind. Eng. Chem. Res., 45(14), 5066-5077. 

  27. Hashim, M.A., Mukhopadhyay, S., Sahu, J.N., and Sengupta, B., 2011, Remediation technologies for heavy metal contaminated groundwater, J. Envi. Manage., 92(10), 2355-2388. 

  28. Hem, J.D., 1985, Study and Interpretation of the Chemical Characteristics of Natural Water, Department of the Interior, US Geological Survey, Place, Published. 

  29. Hong, M., Yu, L., Wang, Y., Zhang, J., Chen, Z., Dong, L., Zan, Q., and Li, R., 2019, Heavy metal adsorption with zeolites: The role of hierarchical pore architecture, Chemi. Engin. J., 359, 363-372. 

  30. Huggins, T.M., Haeger, A., Biffinger, J.C., and Ren, Z.J., 2016, Granular biochar compared with activated carbon for wastewater treatment and resource recovery, W. Re., 94, 225-232. 

  31. Ibrahimi, M.M. and Sayyadi, A.S., 2015, Application of natural and modified zeolites in removing heavy metal cations from aqueous media: an overview of including parameters affecting the process, J. Geo. Agri. Envi. Sci., 3(2), 1-7. 

  32. Inyang, M.I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Ok, Y.S., and Cao, X., 2016, A review of biochar as a low-cost adsorbent for aqueous heavy metal removal, Envi. Sci. & Tech., 46(4), 406-433. 

  33. Jha, I., Iyengar, L., and Rao, A.P., 1988, Removal of cadmium using chitosan, J. Envi. Engin., 114(4), 962-974. 

  34. Joo, S.H., Feitz, A.J., and Waite, T.D., 2004, Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron, Environ. Sci. Technol., 38(7), 2242-2247. 

  35. Jun, D., Yongsheng, Z., Weihong, Z., and Mei, H., 2009, Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater, J. Hazard. Mater., 161(1), 224-230. 

  36. Kaprara, E., Pinakidou, F., Paloura, E.C., Zouboulis, A.I., and Mitrakas, M., 2018, Continuous flow process of Cr (VI) removal from drinking water through reduction onto FeOOH by inorganic sulfur reductants, W. Sci. Tech.: W. Su., 18(2), 737-744. 

  37. Kasozi, G.N., Zimmerman, A.R., Nkedi-Kizza, P., and Gao, B., 2010, Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars), Environ. Sci. Technol., 44(16), 6189-6195. 

  38. Kiran, M.G., Pakshirajan, K., and Das, G., 2017, An overview of sulfidogenic biological reactors for the simultaneous treatment of sulfate and heavy metal rich wastewater, Chemi. Engin. Sci., 158, 606-620. 

  39. Kovar, K. and Herbert, M., 1998, Groundwater Quality: Remediation and Protection: Proceedings of the GQ'98 Conference Held in Tubingen, Germany, from 21 to 25 September, IAHS Press, Place, Published. 

  40. Kubier, A., Wilkin, R.T., and Pichler, T., 2019. Cadmium in soils and groundwater: a review, Appl. Geochemi., 108, 104388. 

  41. Lapointe, F., Fytas, K., and McConchie, D., 2006, Efficiency of Bauxsol TM in permeable reactive barriers to treat acid rock drainage, M. W. Envi., 25(1), 37-44. 

  42. Lee, M., Paik, I.S., Kim, I., Kang, H., and Lee, S., 2007, Remediation of heavy metal contaminated groundwater originated from abandoned mine using lime and calcium carbonate, J. Hazard. Mater., 144(1-2), 208-214. 

  43. Li, D., Kaplan, D.I., Knox, A.S., Crapse, K.P., and Diprete, D.P., 2014, Aqueous 99Tc, 129I and 137Cs removal from contaminated groundwater and sediments using highly effective low-cost sorbents, J. Envi. Radio., 136, 56-63. 

  44. Li, Z., Gu, H., Hong, B., Wang, N., and Chen, M., 2022, An innovative process for dealkalization of red mud using leachate from Mn-containing waste, J. Envi. Chemi. Engin., 10(2), 107222. 

  45. Liang, L., Li, X., Lin, Z., Tian, C., and Guo, Y., 2020, The removal of Cd by sulfidated nanoscale zero-valent iron: The structural, chemical bonding evolution and the reaction kinetics, Chemi. Engin. J., 382, 122933. 

  46. Lin, X., Burns, R.C., and Lawrance, G.A., 2005, Heavy metals in wastewater: the effect of electrolyte composition on the precipitation of cadmium (II) using lime and magnesia, Water, Air, and Soil Pollution, 165(1), 131-152. 

  47. Liu, X., Chen, G.-R., Lee, D.-J., Kawamoto, T., Tanaka, H., Chen, M.-L., and Luo, Y.-K., 2014, Adsorption removal of cesium from drinking waters: A mini review on use of biosorbents and other adsorbents, Bio. Tech., 160, 142-149. 

  48. Lockwood, C.L., Mortimer, R.J., Stewart, D.I., Mayes, W.M., Peacock, C.L., Polya, D.A., Lythgoe, P.R., Lehoux, A.P., Gruiz, K., and Burke, I.T., 2014, Mobilisation of arsenic from bauxite residue (red mud) affected soils: effect of pH and redox conditions, Appl. Geochemi., 51, 268-277. 

  49. Lombi, E., Zhao, F.-J., Zhang, G., Sun, B., Fitz, W., Zhang, H., and McGrath, S.P., 2002, In situ fixation of metals in soils using bauxite residue: chemical assessment, Envi. Pollu., 118(3), 435-443. 

  50. Ludwig, R.D., McGregor, R.G., Blowes, D.W., Benner, S.G., and Mountjoy, K., 2002, A permeable reactive barrier for treatment of heavy metals, Ground., 40(1), 59-66. 

  51. Mandal, S., Muralidharan, C., and Mandal, A.B., 2019, Water pollution remediation techniques with special focus on adsorption, Advanced Research in Nanosciences for Water Technology, pp. 39-68, Springer. 

  52. Mariana, M., HPS, A.K., Mistar, E., Yahya, E.B., Alfatah, T., Danish, M., and Amayreh, M., 2021, Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption, J. W. Proc. Engin., 43, 102221. 

  53. Marsh, H. and Reinoso, F.R., 2006, Activated Carbon, Elsevier, Place, Published. 

  54. Miao, Z., Brusseau, M., Carroll, K.C., Carreon-Diazconti, C., and Johnson, B., 2012, Sulfate reduction in groundwater: characterization and applications for remediation, Envi. Geochemi. Heal., 34(4), 539-550. 

  55. Mochida, I., Korai, Y., Shirahama, M., Kawano, S., Hada, T., Seo, Y., Yoshikawa, M., and Yasutake, A., 2000, Removal of SOx and NOx over activated carbon fibers, Carbon., 38(2), 227-239. 

  56. Mohammed, A. S., Kapri, A., and Goel, R., 2011, Heavy metal pollution: Source, impact, and remedies, Biomanage. Metal-con. Soil., 20, 1-28 

  57. Mohan, D. and Pittman Jr, C.U., 2006, Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water, J. Hazard. Mater., 137(2), 762-811. 

  58. Montana, M., Camacho, A., Serrano, I., Devesa, R., Matia, L., and Valles, I., 2013, Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal, J. Envi. Radio., 125, 86-92. 

  59. Moraci, N. and Calabro, P.S., 2010, Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers, J. Envi. Manage., 91(11), 2336-2341. 

  60. Motsi, T. 2010 Remediation of Acid Mine Drainage using Natural Zeolite, University of Birmingham. 

  61. Mucsi, G., Halyag, N., Kurusta, T., and Kristaly, F., 2021, Control of carbon dioxide sequestration by mechanical activation of red mud, Wa. Bio. Valori., 12(12), 6481-6495. 

  62. Mukherjee, A., Zimmerman, A., and Harris, W., 2011, Surface chemistry variations among a series of laboratory-produced biochars, Geoderma, 163(3-4), 247-255. 

  63. Obiri-Nyarko, F., Grajales-Mesa, S.J., and Malina, G., 2014, An overview of permeable reactive barriers for in situ sustainable groundwater remediation, Chemo., 111, 243-259. 

  64. Puls, R.W., Paul, C.J., and Powell, R.M., 1999, The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test, Appl. Geochemi., 14(8), 989-1000. 

  65. Rao, K., Mohapatra, M., Anand, S., and Venkateswarlu, P., 2010, Review on cadmium removal from aqueous solutions, J. Engin. Sci. Tech., 2(7). 

  66. Rubinos, D.A. and Spagnoli, G., 2019, Assessment of red mud as sorptive landfill liner for the retention of arsenic (V), J. Envi. Manage., 232, 271-285. 

  67. Saikhao, L., Setthayanond, J., Karpkird, T., and Suwanruji, P., 2017, Comparison of sodium dithionite and glucose as a reducing agent for natural indigo dyeing on cotton fabrics, MATEC Web of Conferences., 108, 03001, EDP Sciences. 

  68. Scherer, M.M., Richter, S., Valentine, R.L., and Alvarez, P.J., 2000, Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up, Critical Reviews in Microbiology, 26(4), 221-264. 

  69. Sedlazeck, K.P., Vollprecht, D., Muller, P., Mischitz, R., and Giere, R., 2020, Impact of an in-situ Cr (VI)-contaminated site remediation on the groundwater, Envi. Sci. Pollu. Re., 27(13), 14465-14475. 

  70. Shen, Y. and Buick, R., 2004, The antiquity of microbial sulfate reduction, Earth-Sci. Review., 64(3-4), 243-272. 

  71. Shin, E.C., Park, J.J., Jeong, C.G., Kim, S.H., 2014, Adsorption characteristics evaluation of natural zeolite for heavy-metal contaminated material remediation, J. Korea. Geo. Soci., 13(2), 59-67. 

  72. Singh, B., Alloway, B., and Bochereau, F., 2000, Cadmium sorption behavior of natural and synthetic zeolites, Communi. S. Sci. P. A., 31(17-18), 2775-2786. 

  73. Song, J., Huang, G., Han, D., Hou, Q., Gan, L., and Zhang, M., 2021, A review of reactive media within permeable reactive barriers for the removal of heavy metal (loid) s in groundwater: Current status and future prospects, J. Clean. Pro., 319, 128644. 

  74. Stefaniuk, M., Oleszczuk, P., Ok, Y.S., 2016, Review on nano zerovalent iron (nZVI): From synthesis to environmental applications, Chemi. Engin. J., 287, 618-632. 

  75. Su, Y., Adeleye, A.S., Keller, A.A., Huang, Y., Dai, C., Zhou, X., and Zhang, Y., 2015, Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal, W. Re., 74, 47-57. 

  76. Su, Y., Lowry, G.V., Jassby, D., Zhang. Y., 2019, Sulfide-modified NZVI(S-NZVI): Synthesis, characterization, and reactivity, Nano. Zero. I. Parti. Envi. Re., 359-386. 

  77. Taamneh, Y. and Sharadqah, S., 2017, The removal of heavy metals from aqueous solution using natural Jordanian zeolite, Appl. W. Sci., 7(4), 2021-2028. 

  78. Tajar, A.F., Kaghazchi, T., and Soleimani, M., 2009, Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells, J. Hazard. Mater., 165(1-3), 1159-1164. 

  79. Tandon, P.K. and Singh, S.B., 2016, Redox processes in water remediation, Envi. Chemi. Letter., 14(1), 15-25. 

  80. Tasharrofi, S., Rouzitalab, Z., Maklavany, D.M., Esmaeili, A., Rabieezadeh, M., Askarieh, M., Rashidi, A., and Taghdisian, H., 2020, Adsorption of cadmium using modified zeolite-supported nanoscale zero-valent iron composites as a reactive material for PRBs, Sci. Envi., 736, 139570. 

  81. Thornton, E. and Jackson, R., 1994, Laboratory and Field Evaluation of the Gas Treatment Approach for Insitu Remediation of Chromate-contaminated Soils, Westinghouse Hanford Co. 

  82. Ullah, S., Faiz, P., and Leng, S., 2020, Synthesis, Mechanism, and Performance Assessment of Zero-Valent Iron for Metal-Contaminated Water Remediation: A Review, CLEAN-S. A. W., 48(9), 2000080. 

  83. Vakili, M., Deng, S., Cagnetta, G., Wang, W., Meng, P., Liu, D., and Yu, G., 2019, Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review, Se. Purifi. Tech., 224, 373-387. 

  84. Vanderheyden, S., Van Ammel, R., Sobiech-Matura, K., Vanreppelen, K., Schreurs, S., Schroeyers, W., Yperman, J., and Carleer, R., 2016, Adsorption of cesium on different types of activated carbon, J. Radio. Nu. Chemi., 310(1), 301-310. 

  85. Wang, M. and Liu, X., 2021, Applications of red mud as an environmental remediation material: A review, J. Hazard. Mater., 408, 124420. 

  86. Wang, S., Gao, B., Zimmerman, A.R., Li, Y., Ma, L., Harris, W.G., and Migliaccio, K.W., 2015, Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass, Chemo., 134, 257-262. 

  87. Wang, S. and Wu, H., 2006, Environmental-benign utilisation of fly ash as low-cost adsorbents, J. Hazard. Mater., 136(3), 482-501. 

  88. Waybrant, K., Blowes, D., and Ptacek, C., 1998, Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage, Environ. Sci. Technol., 32(13), 1972-1979. 

  89. Weber, A., Ruhl, A.S., and Amos, R.T., 2013, Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling, J. Contami. Hydro., 151, 68-82. 

  90. Yang, L., Donahoe, R.J., and Redwine, J.C., 2007, In situ chemical fixation of arsenic-contaminated soils: An experimental study, Sci. Envi., 387(1-3), 28-41. 

  91. Zaini, M.A.A., Amano, Y., and Machida, M., 2010, Adsorption of heavy metals onto activated carbons derived from polyacrylonitrile fiber, J. Hazard. Mater., 180(1-3), 552-560. 

  92. Zhou, D., Li, Y., Zhang, Y., Zhang, C., Li, X., Chen, Z., Huang, J., Li, X., Flores, G., and Kamon, M., 2014, Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates, J. Contami. Hydro., 168, 1-16. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로