$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

가상 야외지질답사 모듈 개발에 참여한 초등학생들의 학습 효과 탐색
Exploring Learning Effects of Elementary School Students Engaging in the Development of Geological Virtual Field Trips 원문보기

대한지구과학교육학회지 = Journal of the Korean society of earth science education, v.15 no.2, 2022년, pp.171 - 191  

최윤성 (서울대학교) ,  김종욱 (서울교육대학교)

초록
AI-Helper 아이콘AI-Helper

이 연구의 목적은 광물과 암석을 주제로 초등학생들이 가상 야외지질답사 모듈 개발에 직접 참여함으로써 관찰되는 학생들의 학습 효과를 귀납적으로 탐색하는 것이다. 수도권 소재 'H' 초등학교에 재학 중인 10명의 학생들이 본 연구에 참여하였다. 학생들은 가상 야외지질답사 모듈 개발을 위해 사전에 실제로 야외지질답사를 실행하고 가상 야외지질답사 모듈을 개발하였다. 이 과정에서 학생들이 작성한 서면 자료와 비디오 녹화 영상, 음성 자료, 그리고 모든 연구가 종료된 이후 진행된 면담 자료를 수집하였다. 가상 야외지질학습의 구성 요소 중 네 가지 영역(인지, 심리, 지리, 기술)을 중심으로 연구 참여자들의 학습 효과를 분석하였다. 그 결과 가상 야외지질학습의 네 가지 요소, 인지, 지리, 심리, 기술 영역에서 긍정적인 학습 효과를 확인하였다. 이 연구는 연구 참여자들이 가상 야외지질학습에 단순 참여자가 아니라 가상 야외지질답사 모듈 수업 개발자로서 참탐구의 측면에서 지질학 학습에 유의미한 결과가 있음을 밝혔다.

Abstract AI-Helper 아이콘AI-Helper

The purpose of this study is to explore inductively learning effects of virtual field trips(VFTs) programs developed by elementary school students under the theme of minerals and rocks, focusing on learning in virtual geological components. Ten students attending 'H' elementary school in the metropo...

주제어

표/그림 (15)

참고문헌 (67)

  1. 권홍진, 김찬종(2007). 야외 지질 학습에 대한 초임 지구과학 교사의 인식. 한국지구과학회지, 28(1), 14-23. 

  2. 김건우, 이기영(2011). 플래시 파노라마를 활용한 웹-기반 가상야외지질답사 개발 및 활용 방안 탐색: 제주도 화산 지형을 중심으로. 한국지구과학회지, 32(2), 212-224. 

  3. 김희수(2014). 3D 파노라마 가상 현실 기술을 이용한 지질 답사 학습 자료의 개발과 적용. 한국지구과학회지, 35(3), 180-191. 

  4. 김희수(2015). 360 3D 파노라마 기술을 적용한 VFT 개발 및 효과. 대한지구과학교육학회지, 8(2), 193-205. 

  5. 김희수(2019). 파노라마 가상현실 기술의 교육적 활용. 시그마프레스. 

  6. 윤마병(2019). 3D 파노라마 가상현실 만들기를 통한 학성리 맨삽지 야외학습장 융합교육 프로그램 개발. 현장과학교육, 13(3), 339-358. 

  7. 조재희, 윤마병(2022). 남해 해상 국립공원 신수도의 지질명소 및 3D 파노라마 야외학습장 개발. 대한지구과학교육학회지, 15(1), 91-102. 

  8. 최윤성(2022). 야외지질학습에서 생소한 경험 공간에 대한 초등 예비교사와 중등 지구과학 예비교사들의 인식 탐색. 대한지구과학교육학회지, 15(1), 27-46. 

  9. 최윤성, 김종욱(2022). '광물과 암석' 관련 야외지질학습에서 초등학생들의 학습 효과에 대한 탐색-생소한 경험 공간을 중심으로-. 한국지구과학회지, 43(3), 430-445. 

  10. 최윤성, 김찬종, 최승언(2018). 야외지질학습에 대한 예비 중등 지구과학 교사의 인식 탐색. 한국지구과학회지, 39(3), 291-302. 

  11. 허준혁, 이기영(2013). 고등학교 지구과학 수업에서 플래시 파노라마 기반 가상야외답사의 활용이 학생들의 공간 시각화 능력 및 화산 개념 이해에 미치는 영향. 한국지구과학회지, 34(4), 345-355. 

  12. Anderberg, P., & Jonsson, B. (2005). Being there. Disability & Society, 20(7), 719-733. 

  13. Arrowsmith, C., Counihan, A., & McGreevy, D. (2005). Development of a multi-scaled virtual field trip for the teaching and learning of geospatial science. International Journal of Education and Development using ICT, 1(3), 42-56. 

  14. Barton, A. C., & Tan, E. (2010). We be burnin'! Agency, identity, and science learning. The Journal of the Learning Sciences, 19(2), 187-229. 

  15. Basu, S. J., Calabrese Barton, A., Clairmont, N., & Locke, D. (2009). Developing a framework for critical science agency through case study in a conceptual physics context. Cultural Studies of Science Education, 4(2), 345-371. 

  16. Boeve-de Pauw, J., Van Hoof, J., & Van Petegem, P. (2019). Effective field trips in nature: The interplay between novelty and learning. Journal of Biological Education, 53(1), 21-33. 

  17. Boyle, A., Maguire, S., Martin, A., Milsom, C., Nash, R., Rawlinson, S., Turner, A., Wurthmann, S., & Conchie, S. (2007). Fieldwork is good: The student perception and the affective domain. Journal of Geography in Higher Education, 31(2), 299-317. 

  18. Caliskan, O. (2011). Virtual field trips in education of earth and environmental sciences. Procedia-Social and Behavioral Sciences, 15, 3239-3243. 

  19. Carabajal, I., Marshall, A., & Atchison, C. (2017). A synthesis of instructional strategies in geoscience education literature that address barriers to inclusion for students with disabilities. Journal of Geoscience Education, 65(4), 531-541. 

  20. Cassady, J., Kozlowski, A., & Kornmann, M. (2008). Electronic field trips as interactive learning events: Promoting student learning at a distance. Journal of Interactive Learning Research, 19(3), 439-454. 

  21. Cheng, K., & Tsai, C. (2019). A case study of immersive virtual field trips in an elementary classroom: Students' learning experience and teacher-student interaction behaviors. Computers & Education, 140, 103600. 

  22. Chiarella, D., & Vurro, G. (2020). Fieldwork and disability: An overview for an inclusive experience. Geological Magazine, 157(11), 1933-1938. 

  23. Dolphin, G., Dutchak, A., Karchewski, B., & Cooper, J. (2019). Virtual field experiences in introductory geology: Addressing a capacity problem, but finding a pedagogical one. Journal of Geoscience Education, 67(2), 114-130. 

  24. Elkins, J. T., & Elkins, N. M. (2007). Teaching geology in the field: Significant geoscience concept gains in entirely field-based introductory geology courses. Journal of Geoscience Education, 55(2), 126-132. 

  25. Elleven, R., Wircenski, M., Wircenski, J., & Nimon, K. (2006). Curriculum-based virtual field trips: Career development opportunities for students with disabilities. Journal for Vocational Special Needs Education, 28(3), 4-11. 

  26. Francek, M. (2013). A compilation and review of over 500 geoscience misconceptions. International Journal of Science Education, 35(1), 31-64. 

  27. Gillett, J. (2011). The use of experiential education and field trips for learning. Journal of Educational Multimedia and Hypermedia, 20(2), 173-177. 

  28. Han, I. (2020). Immersive virtual field trips in education: A mixed methods study on elementary students' presence and perceived learning. British Journal of Educational Technology, 51(2), 420-435. 

  29. Hesthammer, J., Fossen, H., Sautter, M., Saether, B., & Johansen, S. (2002). The use of information technology to enhance learning in geological field trips. Journal of Geoscience Education, 50(5), 528-538. 

  30. Hurst, S. (1998). Use of "virtual" field trips in teaching introductory geology. Computers & Geosciences, 24(7), 653-658. 

  31. Hutchins, E., & Renner, N. (2012). Situated and embodied learning in the field. In K. A. Kastens, & C. A. Manduca (Eds.), Earth and mind II: A synthesis of research on thinking and learning in the geosciences (Vol. 486, pp. 181-182). Geological Society of America. 

  32. Jacobson, A., Militello, R., & Baveye, P. (2009). Development of computer-assisted virtual field trips to support multidisciplinary learning. Computers & Education, 52(3), 571-580. 

  33. Kenna, J., & Potter, S. (2018). Experiencing the world from inside the classroom: Using virtual field trips to enhance social studies instruction. The Social Studies, 109(5), 265-275. 

  34. Kenna, J., & Russell, W. (2015). Tripping on the core: Utilizing field trips to enhance the common core. Social Studies Research & Practice (Board of Trustees of the University of Alabama), 10(2), 96-111. 

  35. King, C. (2008). Geoscience education: An overview. Studies in Science Education, 44(2), 187-222. 

  36. Kirchen, D. (2011). Making and taking virtual field trips in pre-k and the primary grades. YC: Yong Children, 66(6), 22-26. 

  37. Kisiel, J. (2006). Making field trips work. The Science Teacher, 73(1), 46-48. 

  38. Klemm, E., & Tuthill, G. (2003). virtual field trips: Best practices. International Journal of Instructional Media, 30(2), 177-193. 

  39. Klippel, A., Zhao, J., Jackson, K. L., La Femina, P., Stubbs, C., Wetzel, R., Blair, J., Wallgrun, J., & Oprean, D. (2019). Transforming earth science education through immersive experiences: Delivering on a long held promise. Journal of Educational Computing Research, 57(7), 1745-1771. 

  40. Klippel, A., Zhao, J., Oprean, D., Wallgrun, J., Stubbs, C., La Femina, P., & Jackson, K. (2020). The value of being there: Toward a science of immersive virtual field trips. Virtual Reality, 24(4), 753-770. 

  41. Kolb, D. (1984). Experiential learning: Experience as the source of learning and development. Prentice-Hall. 

  42. Krakowka, A. (2012). Field trips as valuable learning experiences in geography courses. Journal of Geography, 111(6), 236-244. 

  43. Lakeoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. New York, NY: Basic Books. 

  44. Lin, M., Tutwiler, M., & Chang, C. (2011). Exploring the relationship between virtual learning environment preference, use, and learning outcomes in 10th grade earth science students. Learning, Media and Technology, 36(4), 399-417. 

  45. Litherland, K., & Stott, T. A. (2012). Virtual field sites: Losses and gains in authenticity with semantic technologies. Technology, Pedagogy and Education, 21(2), 213-230. 

  46. Makransky, G., & Lilleholt, L. (2018). A structural equation modeling investigation of the emotional value of immersive virtual reality in education. Educational Technology Research and Development, 66(5), 1141-1164. 

  47. Mathews, S., Andrews, L., & Luck, E. (2012). Developing a second life virtual field trip for university students: An action research approach. Educational Research, 54(1), 17-38. 

  48. Orion, N. (1989). Development of a high-school geology course based on field trips. Journal of Geological Education, 37(1), 13-17. 

  49. Orion, N. (1993). A model for the development and implementation of field trips as an integral part of the science curriculum. School Science and Mathematics, 93(6), 325-31. 

  50. Orion, N., & Hofstein, A. (1991). The measurement of students' attitudes towards scientific field trips. Science Education, 75(5), 513-523. 

  51. Petcovic, C., Stokes, A., & Caulkins, J. (2014). Geoscientists' perceptions of the valude of undergraduate field education. GSA Today, 24(7), 4-10. 

  52. Petersen, G., Klingenberg, S., Mayer, R., & Makransky, G. (2020). The virtual field trip: Investigating how to optimize immersive virtual learning in climate change education. British Journal of Educational Technology, 51(6), 2099-2115. 

  53. Pham, H., Dao, N., Pedro, A., Le, Q., Hussain, R., Cho, S., & Park, C. (2018). Virtual field trip for mobile construction safety education using 360-degree panoramic virtual reality. International Journal of English Education, 34(4), 1174-1191. 

  54. Pierantozzi, M. (2008). Beyond the classroom walls-virtual field trips. Journal on School Educational Technology, 3(3), 1-4. 

  55. Pugsley, J., Howell, J., Hartley, A., Buckley, S., Brackenridge, R., Schofield, N., Maxwell, G., Chmielewska, M., Ringdal K., Naumann, N., & Vanbiervliet, J. (2021). Virtual field-trips: Construction, delivery, and implications for future geological fieldtrips. Geoscience Communication Discussions, 1-33. 

  56. Pyle, E. (2009). The evaluation of field course experiences: A framework for development, improvement, and reporting. Field Geology Education: Historical Perspectives and Modern Approaches: Geological Society of America Special Paper, 461, 341-356. 

  57. Rotzien, J., Sincavage, R., Pellowski, C., Gavillot, Y., Filkorn, H., Cooper, S., Shannon, J., Yildiz, U., Sawyer, F., & Uzunlar, N. (2021). Field-based geoscience education during the COVID-19 Pandemic: Planning, execution, outcomes and forecasts. GSA Today, 31(2-4), 4-10. 

  58. Seifan, M., Dada, O., & Berenjian, A. (2020). The effect of real and virtual construction field trips on students' perception and career aspiration. Sustainability, 12(3), 1200. 

  59. Stainfield, J., Fisher, P., Ford, B., & Solem, M. (2000). International virtual field trips: A new direction? Journal of Geography in Higher Education, 24(2), 255-262. 

  60. Stokes, A., Feig, A., Atchison, C., & Gilley, B. (2019). Making geoscience fieldwork inclusive and accessible for students with disabilities. Geosphere, 15(6), 1809-1825. 

  61. Sturm, H., & Bogner, F. (2010). Learning at workstations in two different environments: A museum and a classroom. Studies in Educational Evaluation, 36(1-2), 14-19. 

  62. Tuthill, G., & Klemm, E. (2002). Virtual field trips: Alternatives to actual field trips. International Journal of Instructional Media, 29(4), 453-468. 

  63. Tutwiler, M., Lin, M., & Chang, C. (2013). Determining virtual environment "fit": The relationship between navigation style in a virtual field trip, student self-reported desire to visit the field trip site in the real world, and the purposes of science education. Journal of Science Education and Technology, 22(3), 351-361. 

  64. Xie, P., & Cheng, K. (2021). Exploring the concept of novelty space to recreational vehicle travels. Journal of China Tourism Research, 17(2), 273-290. 

  65. Xie, P., & Garner, K. (2009). An analysis of students' photos of the novelty space on a field trip. Journal of Teaching in Travel & Tourism, 9(3-4), 176-192. 

  66. Zanetis, J. (2010). The beginner's guide to interactive virtual field trips. Learning & Leading with Technology, 37(6), 20-23. 

  67. Zhao, J., LaFemina, P., Carr, J., Sajjadi, P., Wallgrun, J., & Klippel, A. (2020). Learning in the field: Comparison of desktop, immersive virtual reality, and actual field trips for place-based STEM education. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 893-902). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로