$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수학 정보과학 융합을 위한 창의적 문제해결 활동 개발: 영재 학생을 대상으로 한 모자 게임을 중심으로
Development of Creative Problem-Solving Activities for Integrating Mathematics and Information Science: Focusing on the Hat Game for Mathematically Gifted Students 원문보기

Journal of the Korean Society of Mathematical Education. Series E: Communications of Mathematical Education, v.36 no.3, 2022년, pp.439 - 467  

서지영 (서울대학교 대학원) ,  윤상균 (서울대학교)

초록
AI-Helper 아이콘AI-Helper

미래 사회에는 지식뿐만 아니라 창의성과 협동심, 융합적 사고 등을 포함하는 다양한 역량이 필요하다. 본 연구는 중요한 수학 교과 역량인 수학 문제해결력, 의사소통 능력 등의 함양을 기대하며 수학 정보과학 융합을 위한 프로그램을 개발하였다. 선행지식이 크게 요구되지 않고, 일상언어와 쉽게 접할 수 있는 도구만으로 동기유발이 가능하며 다자간 협력이 필수적인 창의적 문제해결 활동 기반 프로그램이다. 활동의 참가자 수가 증가함에 따라 수학의 유용성과 엄밀성을 경험할 수 있으며, 이론적 원리는 유한체 위에서의 행렬 이론을 바탕으로 한다. 또한 정보과학에서 주요 주제 중 하나인 오류정정코드와의 관련성을 강조할 수 있도록 구성하였다. 본 프로그램의 실세계 맥락이 수학적 의사소통 능력의 함양과 수학의 가치 경험 기회 제공에 도움이 되기를 바라고, 코딩을 수반하지 않는다는 점에서 교사들의 접근성이 높기를 기대한다.

Abstract AI-Helper 아이콘AI-Helper

The future society requires not only knowledge but also various competencies, including creativity, cooperative spirit and integrated thinking. This research develops a program for integrating mathematics and information science to enhance important mathematical competencies such as problem-solving ...

주제어

표/그림 (27)

참고문헌 (84)

  1. Kang, H. B., Lee, M. S., & Cho, H. H. (2021). Coding Environment and Exploration Curriculum for Max-Min Optimizations with an Evolution Strategy. Journal of Educational Research in Mathematics, 31(1), 109-130. 

  2. Choi-Koh, S. S., Han, H. S., Kim, H. J., Lee, D. G., Shin, D. J., & Lee, C. Y. (2020). A study on the textbook development based on mathematical modeling. Journal of Education & Culture, 26(5), 665-690. 

  3. Ko, C. S., & Oh, Y. Y. (2015). The Effects of Mathematical Modeling Activities on Mathematical Problem Solving and Mathematical Dispositions. Journal of Elementary Mathematics Education in Korea, 19(3), 347-370. 

  4. Ministry of Education (2015). Mathematics curriculum. Notification of the Ministry of Education No. 2015-74. [Vol. 8]. Author. 

  5. Ministry of Education (2017). Act for the Promotion of Science, Mathematics and Information Education. [Act No. 14903]. 

  6. Ministry of Education (2020a). Mathematics education comprehensive plan to grow together and lead the future with the power of thinking [2020-2024]. Press release of Ministry of Education. https://www.moe.go.kr/boardCnts/view.do?boardID294&boardSeq80718&lev0&searchTypenull&statusYNW&page1&smoe&m020402&opTypeN 

  7. Ministry of Education (2020b). The 3rd Mathematics Education Comprehensive Plan. Press release of Ministry of Education. https://www.moe.go.kr/boardCnts/view.do?boardID294&boardSeq80718&lev0&searchTypenull&statusYNW&page1&smoe&m020402&opTypeN 

  8. Ministry of Education (2020c). Artificial intelligence, into school! - Introduced artificial intelligence (AI) as an elementary school math study assistant and high school career electives. Press release of Ministry of Education. https://www.moe.go.kr/boardCnts/view.do?boardID294&boardSeq81918&lev0&searchTypenull&statusYNW&p age1&smoe&m020402&opTypeN 

  9. Kwon, O. N., & Ju, M. K. (2005). Effects of Inquiry-oriented Differential Equations Instruction Based on the Realistic Mathematics Education. The Mathematical Education, 44(3), 375-396. 

  10. Kim, M. K., Lee, J. Y., & Kim, D. H. (2020). Development and practical exploration of creative and convergent mathematics classes (for realizing embodied understanding). Kyungmoon. 

  11. Kim, S. H. (2005). Consideration of Mathematical Modeling as a Problem-based Learning Method. Journal of Korea Society of Educational Studies in Mathematics, 7(3), 303-318. 

  12. Kim, S. W., & Lee, Y. J. (2021). Effects of Science, Mathematics, and Informatics Convergence Education Program on Middle School Student's Computational Thinking. Journal of Korean Association of Computer Education, 24(3), 1-10. 

  13. Kim, J. S. (2016). The role of the fourth industrial revolution and education. Monthly Education (2016.07.), 104-113. 

  14. Kim, H. M., & Han, S. Y. (2018). A Study on the Development of the Assessment Toolfor Mathematical Problem Solving Competency. Journal of Korea Society Educational Studies in Mathematics, 20(1), 83-105. 

  15. Na, G. S., Park, M. M., Kim, D. W., Kim, Y., & Lee, S. J. (2018). Exploring the Direction of Mathematics Education in the Future Age. Journal of Educational Research in Mathematics, 28(4), 437-478. 

  16. Ryu, S. R. (2001). Development of elementary school gifted education program using graph theory. Journal of Korean Society Mathmatics Education, 2001, 23-44. 

  17. Ryu, S. R., Lee, J. H., Yoon, M. B., & Kim, H. S. (2018). Development of Convergence Education Program for Elementary School Gifted Education Based on Mathematics and Science. Journal of the Korea Convergence Society, 9(10), 217-228. 

  18. Park, M. G. (2009). The Concept of Creativity and Its Enhancement in Mathematics Education. Communications of Mathematical Education, 23(3), 803-822. 

  19. Park, S. Y., & Han, S. Y. (2018). Reconstruction and application of reforming textbook problems for mathematical modeling process. The Mathematical Education, 57(3), 289-309. 

  20. Park, J. H. (2017). Fostering Mathematical Creativity by Mathematical Modeling. Journal of Educational Research in Mathematics, 27(1), 69-88. 

  21. Park, J. H., & Kim, D. W. (2017). Analysis on elementary gifted students' inquiries on combinatoric tasks. Journal of elementary mathematics education in Korea, 21(2), 365-389. 

  22. Sung, J. H., & Lee, C. H. (2017). A Study on the Manifestation Process Model Development of Group Creativity among Mathematically Gifted Student. Journal of Educational Research in Mathematics, 27(3), 557-580. 

  23. Shin, G. C., & Seo, B. U. (2019). A Study on Development of Teaching & Learning Materials related to Coding for Convergence Education Integrating Mathematics and Information. Journal of Science Education, 43(1), 17-42. 

  24. Yeo, S. H., Suh, H. J., Han, S. Y., & Kim, J. H. (2021). Analysis of problem solving competency and types of tasks in elementary mathematics textbooks: Challenging/Thinking and inquiry mathematics in the domain of number and operation. The Mathematical Education, 60(4), 431-449. 

  25. Yu, H. G., & Yun, J. G. (2017). Development and application of program for mathematically gifted students based on mathematical modeling: focused on Voronoi diagram and Delaunay triangulation. Communications of Mathematical Education, 31(3), 257-277. 

  26. Lee, K. H. (2015). Mathematical Creativity: Mathematics education through the eyes of mathematical creativity. Kyungmoon. 

  27. Lee, K. H. (2016). Reanalysis of Realistic Mathematics Education Perspective in Relation to Cultivation of Mathematical Creativity. Journal of Educational Research in Mathematics, 26(1), 47-62. 

  28. Lee, D. H. (2019). A Study on the Mathematical Problem Solving Teaching based on the Problem solving approach according to the Intuitive and the Formal Inquiry. Journal of the Korean Society for History of Mathmatics, 32(6), 281-299. 

  29. Lee, S. G., Lee, J. H., & Ham, Y. M. (2020). Artificial Intelligence and College Mathematics Education. Communications of Mathematical Education, 34(1), 1-15. 

  30. Lim, C. I. (2019). Redirecting the Research and Practice of Educational Technology for Future Society and Education. Journal of Educational Technology, 35(2), 253-287. 

  31. Jang, H. W. (2016). Mathematical Connectivity with School Mathematics. Kyungmoon. 

  32. Chong, Y. O. (2005). Reflections on Developmental Research as a Research Methodology. Journal of Educational Research in Mathematics, 15(3), 353-374. 

  33. Chong, Y. O., Lee, K. H., & Na, G. S. (2018). Realistic mathematics education. Kyowoo. 

  34. Chung, I. W., & Cho, H. H. (2020). Fostering Mathematical Creativity through the Various Mathematical Expressions in the 3D Coordinate System Based Coding Environment: Focusing on Designing Coding Tasks and Analyzing Code Expressions. Journal of Korea Society Educational Studies in Mathematics, 22(1), 161-181. 

  35. Jong, J. H., & Cho, H. H. (2020). Mathematising of Coding Education Command: Focusing on Algebra Education. Journal of Educational Research in Mathematics, 30(1), 131-151. 

  36. Jung, H. Y., Lee, K. H., Baek, D. H., Jung, J. H., & Lim, K. S. (2018). Design for Subject's TaskBased on the Mathematical Modeling Perspective. Journal of Korea Society Educational Studies in Mathematics, 20(1), 149-169. 

  37. Jung, H. Y., & Lee, K. H. (2019). Instructional Design of Mathematical Modeling for Group Creativity. Journal of Educational Research in Mathematics, 29(1), 157-188. 

  38. Cho, M. J., & Jin, S. U. (2016). A Phenomenological Study on Group Creativity Emerging Precess Experiences of Gifted Students in Elementary Schools. Journal of Creativity Education, 16(2), 35-59. 

  39. Choi, K. A. (2017). A study on literature review of mathematical modeling in mathematical competencies perspective. Journal of the Korean School Mathematics Society, 20(2), 187-210. 

  40. Choe, G. B., & An, S. Y. (2005). Development of Discrete Mathematics Program Applicable to Elementary School Gifted Education. Communications of Mathematical Education, 19(1), 167-189. 

  41. Choi, Y. S., & Bae, J. S. (2004). Effects of Teaching with Problem Posing on Mathematical Problem Solving Ability and Attitude in Elementary School Mathematics. Journal of Elementary Mathmatics Education in Korea, 8(1), 23-43. 

  42. Han, S. Y. (2019). Pre-service mathematics teachers' perceptions on mathematical modeling and its educational use. The Mathematical Education, 58(3), 443-458. 

  43. Han, J. M., & Park, M. G. (2010). A Study on the Characteristics of Teacher's Questionnaire for Mathematical Creativity Enhancement. Journal of the Research Presentation Conference of the Korean Society of Mathematical Education, 219-235. 

  44. Hong, J. G., Park, J. S., Seol. J. S., Oh, S. J., Park, M. G., & Park, S. H. (2021). . Chunjae Textbook. 

  45. Hwang, S. U., Kwon, S. H., Jeong, D. S., Park, S, U., & Hong, C. S. (2021). . Mirea-N. 

  46. Alon. N., Hassidim, A., Lubetzky, E., Stav, U., & Weinberg, A. (2008). Broadcasting with side information. The 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 823-832. 

  47. Asempapa, R. S. (2015). Mathematical modeling: Essential for elementary and middle school students. Journal of Mathematics Education, 8(1), 16-29. 

  48. Bar-Yossef, Z., Birk, Y., Jayram, T. S., & Kol, T. (2006). Index coding with side information. The 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 197-206. 

  49. Birk, Y. & Kol, T. (2006). Coding-on-demand by an informed source (ISCOD) for efficient broadcast of different supplemental data to caching clients. IEEE Trans. Inform. Theory, 52, pp. 2825-2830. 

  50. Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects-State, trends and issues in mathematics instruction. Educational studies in mathematics, 22(1), 37-68. 

  51. Blum, W. (2001). Denksport fur Huttrager. Die Zeit, May, 3, 8. 

  52. Blum, W., & Ferri, R. B. (2009). Mathematical modelling: Can it be taught and learnt?. Journal of mathematical modelling and application, 1(1), 45-58. 

  53. Butler, S., Hajiaghayi, M., Kleinberg, R., & Leighton, T. (2008). Hat guessing games. SIAM J. Discrete Math. 22(.2), 592-605. 

  54. Chandra, A., Furst, M., & Lipton, R. (1983). Multiparty protocols. The 15th Annual ACM Symposium on Theory of Computing (STOC), pp. 93-99. 

  55. Cox, C., De Silva, J., DeOrsey, P., Kenter, H. J., Retter, T. & Tobin, J. (2015). How to make the perfect fireworks display: Two strategies for Hanabi. Mathematics Magazine, 88(5), 323-336. 

  56. Ebert, T. (1988). Applications of Recursive Operators to Randomness and Complexity. Doctoral dissertation, University of California, Santa Barbara. https://dl.acm.org/doi/10.5555/927911 

  57. Feige, U. (2010). On optimal strategies for a hat game on graphs. SIAM J. Discrete Math. 24(3), 782-791. 

  58. Freudenthal, H. (1973). Mathmatics as an educational task. Reidel. 

  59. Gadouleau, M. (2018). Finite dynamical systems, hat games, and coding theory. SIAM J. Discrete Math. 32(3), 1922-1945. 

  60. Hendriana, H., Johanto, T., & Sumarmo, U. (2018). The Role of Problem-Based Learning to Improve Students' Mathematical Problem-Solving Ability and Self Confidence. Journal on Mathematics Education, 9(2), 291-300. 

  61. Holevo, A. S. (2019). Quantum systems, channels, information. In Quantum Systems, Channels, Information. de Gruyter. 

  62. Julie, C., & Mudaly, V. (2007). Mathematical modelling of social issues in school mathematics in South Africa. In Modelling and applications in mathematics education (pp. 503-510). Springer. 

  63. Krzywkowski, M. (2010). On the hat problem, its variations, and their applications. Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica, 9(1), 55-67. 

  64. Krzywkowski, M. (2011). Hat problem on odd cycles. Houston Journal of Mathematics, 37, 1063-1069. 

  65. Lannin, J. K. (2005). Generalization and justification: The challenge of introducing algebraic reasoning through patterning activities. Mathematical Thinking and learning, 7(3), 231-258. 

  66. Lee, L. (1996). An initiation into algebraic culture through generalization activities. In Approaches to algebra (pp. 87-106). Springer. 

  67. Lubetzky, E., & Stav, U. (2007). Non-linear index coding outperforming the linear optimum. The 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 161-167. 

  68. Ma, T., Sun, X., & Yu, H. (2011). A new variation of hat guessing games. In International Computing and Combinatorics Conference (pp. 616-626). Springer. 

  69. Nemeth, C. J., & Nemeth-Brown. (2003). Better than Individual? The potential benefit of dissent and diversity for group creativity. In P.B. Paulus, & B. A. Nijstad (Eds.), Group creativity: Innovation through collaboration (pp. 63-84). Oxford University Press. 

  70. Nijstad, B. A., & Paulus, P. B. (2003). Group creativity: Common themes and future directions. In P. B. Paulus (Ed.), Group creativity: Innovation through collaboration (pp. 326-346). Oxford University Press. 

  71. OECD (2009). PISA 2009. Assessment Framework. Key Competencies in Reading, Mathematics and Science. Author. 

  72. Ostergard, P., & Blass, U. (2001). On the size of optimal binary codes of length 9 and covering radius 1. IEEE Trans. Inform. Theory 47 (2001), no. 6, 2556-2557. 

  73. Poulos, J. (2001). Could you solve this $1 million hat trick?, abcNews. 

  74. Robinson, S. (2001). Why mathematicians now care about their hat color. The New York Times, Science Times Section, page D, 5. 

  75. Schwab, K. (2017). The fourth industrial revolution. Currency. 

  76. Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal, 27(3), 379-423. 

  77. Shannon, C. E., & Weaver, W. (1949). The Mathematical Theory of Communication. University of Illinois Press. 

  78. Surya, E., & Putri, F. A. (2017). Improving mathematical problem-solving ability and self-confidence of high school students through contextual learning model. Journal on Mathematics Education, 8(1), 85-94. 

  79. Swetz, F., & Hartzler, J. S. (1991). Mathematical Modeling in the Secondary School Curriculum. National Council of Teachers of Mathematics, Inc., 1906 Association Dr., Reston, VA 22091. 

  80. Szczechla, W. (2017). The three colour hat guessing game on cycle graphs. Electron. J. Combin. 24, no. 1, Paper No. 1.37, 19 pp. 

  81. Tantipongpipat, U. (2014). A combinatorial approach to Ebert's hat game with many colors. Electron. J. Combin. 21, no. 4, Paper 4.33, 18 pp. 

  82. Taylor, P. (2018). Teach the Mathematics of Mathematicians. Education Sciences. 8(2), 56. 

  83. Wilde, M. M. (2013). Quantum information theory. Cambridge University Press. 

  84. Zhou, C., & Luo, L. (2012). Group creativity in learning context: Understanding in a socialcultural framework and methodology. Creative Education, 3(4), 392-399. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로