$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Multi-Cattle tracking with appearance and motion models in closed barns using deep learning 원문보기

스마트미디어저널 = Smart media journal, v.11 no.8, 2022년, pp.84 - 92  

Han, Shujie (Department of Electronics Engineering, Jeonbuk National University) ,  Fuentes, Alvaro (Department of Electronics Engineering, Jeonbuk National University) ,  Yoon, Sook (Department of Computer Engineering, Mokpo National University) ,  Park, Jongbin (Department of Electronics Engineering, Jeonbuk National University) ,  Park, Dong Sun (Department of Electronics Engineering, Jeonbuk National University)

Abstract AI-Helper 아이콘AI-Helper

Precision livestock monitoring promises greater management efficiency for farmers and higher welfare standards for animals. Recent studies on video-based animal activity recognition and tracking have shown promising solutions for understanding animal behavior. To achieve that, surveillance cameras a...

Keyword

참고문헌 (31)

  1. W. Andrew, C. Greatwood, and T. Burghardt, "Visual Localisation and Individual Identification of Holstein Friesian Cattle via Deep Learning," 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 2850-2859, Venice, Italy, Oct. 2017. 

  2. D.W. Bailey, M.G. Trotter, C.W. Knight, and M.G. Thomas, "Use of GPS tracking collars and accelerometers for rangeland livestock production research," Translational Animal Science, Vol. 2, No. 1, pp. 81-88, Jan. 2018. 

  3. W. Li, J.D. Bakker, Y. Li, S. Zheng, and F.Y. Li, "Applying a high-precision tracking system to distinguish the spatiotemporal patterns of animal movement in grassland ecology," Biological Conservation, Vol. 255, No. 109016, Mar. 2021. 

  4. J. Salau, and J. Krieter, "Analysing the space-usage-pattern of a cow herd using video surveillance and automated motion detection," Biosystems Engineering, Vol. 197, pp. 122-134, Sep. 2020. 

  5. A. Zambelis, M. Saadati, G.M. Dallago, P. Stecko, V. Boyer, J.-P. Parent, M. Pedersoli, and E. Vasseur, "Automation of video-based location tracking tool for dairy cows in their housing stalls using deep learning," Smart Agricultural Technology, Vol. 1, No. 100015, pp. 122-134, Dec. 2021. 

  6. T.T. Zin, M.Z. Pwint, P.T. Seint, S. Thant, S. Misawa, K. Sumi, and K. Yoshida, "Automatic Cow Location Tracking System Using Ear Tag Visual Analysis," Sensors, Vol. 20, No. 12, pp. 3564, Jun. 2020. 

  7. P. Chen, "Dairy Cow Health Monitoring System Based on NB-IoT Communication," 2019 International Conference on Electronic Engineering and Informatics (EEI), pp. 393- 396, Nanjing, China, Nov. 2019. 

  8. M. Gillenson, X. Zhang, A. Muthitacharoen, and P. Prasarnphanich, "I've Got You Under My Skin: The Past, Present, and Future Use of RFID Technology in People and Animals," Journal of Information Technology Management, Vol. 30, No. 2, pp. 19-29, 2019. 

  9. Y. Qiao, H. Kong, C. Clark, S. Lomax, D. Su, S. Eiffert, and S. Sukkarieh, "Intelligent perception for cattle monitoring: A review for cattle identification, body condition score evaluation, and weight estimation," Computers and Electronics in Agriculture, Vol. 185, No. 106143, Jun. 2021. 

  10. B. Meunier, P. Pradel, K.H. Sloth, C. Cirie, E. Delval, M.M. Mialon, and I. Veissier, "Image analysis to refine measurements of dairy cow behaviour from a real-time location system," Biosystems Engineering, Vol. 173, pp. 32-44, Sep. 2018. 

  11. H. Dogan, I.B. Basyigit, M. Yavuz, and S. Helhel, "Signal level performance variation of radio frequency identification tags used in cow body," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 7, Jan. 2019. 

  12. S. Kumar, S. Tiwari, and S.K. Singh, "Face recognition for cattle," 2015 Third International Conference on Image Information Processing (ICIIP), pp. 65-72, Waknaghat, India, Dec. 2015. 

  13. S. Kumar, S.K. Singh, and A.K. Singh, "Muzzle point pattern based techniques for individual cattle identification," IET Image Processing, Vol. 11, No. 10, pp. 805-814, Oct. 2017. 

  14. Y. Lu, X. He, Y. Wen, and P.S.P. Wang, "A new cow identification system based on iris analysis and recognition," International Journal of Biometrics, Vol. 6, No. 1, pp. 18-32, Mar. 2014. 

  15. A. Fuentes, S. Yoon, J. Park, and D.S. Park, "Deep learning-based hierarchical cattle behavior recognition with spatio-temporal information," Computers and Electronics in Agriculture, Vol. 177, No. 105627, Oct. 2020. 

  16. A. Ter-Sarkisov, R. Ross, and J. Kelleher, "Bootstrapping Labelled Dataset Construction for Cow Tracking and Behavior Analysis," 2017 14th Conference on Computer and Robot Vision (CRV), pp. 277-284, Edmonton, Canada, May, 2017. 

  17. Y. Hashimoto, H. Hama, and T.T. Zin, "Robust Tracking of Cattle Using Super Pixels and Local Graph Cut for Monitoring Systems," International Journal of Innovative Computing, Information and Control, Vol. 16, No. 4, pp. 1469-1475, Aug. 2020. 

  18. C.A. Martinez-Ortiz, R.M. Everson, and T. Mottram, "Video tracking of dairy cows for assessing mobility scores," Joint European Conference on Precision Livestock Farming, Sep. 2013. 

  19. N. Wojke, A. Bewley, and D. Paulus, "Simple online and realtime tracking with a deep association metric," 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645-3649, Beijing, China, Sep. 2017. 

  20. R. Sundararaman, C. De Almeida Braga, E. Marchand, and J. Pettre, "Tracking pedestrian heads in dense crowd," In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), pp. 3865-3875, Nashville, USA, Jun. 2021. 

  21. Z. Zou, , J. Huang, and P. Luo, "Compensation Tracker: Reprocessing Lost Object for Multi-Object Tracking," In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 307-317, Waikoloa, USA, Jan. 2022. 

  22. V. Kocur, and M. Ftacnik, "Multi-class multi-movement vehicle counting based on CenterTrack," In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPRW), pp. 4009-4015, Nashville, USA, Jun. 2021. 

  23. G. Wang, R. Gu, Z. Liu, W. Hu, M. Song, and J.N. Hwang, "Track without appearance: Learn box and tracklet embedding with local and global motion patterns for vehicle tracking," In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9876-9886, Montreal, Canada, Oct. 2021. 

  24. G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon, TaoXie, J. Fang, imyhxy, K. Michael, V, A. Lorna, D. Montes, J. Nadar, Laughing, tkianai, yxNONG, P. Skalski, Z. Wang, ... M.T. Minh, ultralytics/yolov5: V6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference, Zenodo, 2022. 

  25. A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, "Simple online and realtime tracking," 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464-3468, Phoenix, USA, Sep. 2016. 

  26. J. Luiten, A. Osep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixe, and B. Leibe, "Hota: A higher order metric for evaluating multi-object tracking," International journal of computer vision, Vol. 129, No. 2, pp. 548-578, Feb. 2021. 

  27. E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, "Performance measures and a data set for multi-target, multi-camera tracking," In European conference on computer vision, pp. 17-35, Oct. 2016. 

  28. K. Bernardin, and R. Stiefelhagen, "Evaluating multiple object tracking performance: the clear mot metrics," EURASIP Journal on Image and Video Processing, Vol. 2008, No. 246309, pp. 1-10, Apr. 2008. 

  29. J.-H. Bang, J. Park, S.-W. Park, "A System for Determining the Growth Stage of Fuit Tree Using a Deep Learning-Based Object Detection Model," Smart Media Journal, Vol. 11, No. 4, pp. 9-18, May, 2022. 

  30. K.H. Oh, S. Kim, I. Na, Y.C. Kim, C. Moon, "Gestures Recognition for Smart Device using Contactless Electronic Potential Sensor," Smart Media Journal, Vol. 3, No. 2, pp.14-19, Jun. 2014 

  31. H.B. Jang, C.W. Lee, "Multi-Region based Radial GCN algorithm for Human action Recognition," Smart Media Journal, Vol.11, No.1, pp.46-57, Feb. 2022. 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로