$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

반도체 소자용 산화하프늄 기반 강유전체의 원자층 증착법 리뷰
Review on Atomic Layer Deposition of HfO2-based Ferroelectrics for Semiconductor Devices 원문보기

한국표면공학회지 = Journal of the Korean institute of surface engineering, v.55 no.5, 2022년, pp.247 - 260  

이영환 (서울대학교 신소재공동연구소) ,  권태규 (서울대학교 재료공학부) ,  박민혁 (서울대학교 신소재공동연구소)

Abstract AI-Helper 아이콘AI-Helper

Since the first report on ferroelectricity in Si-doped hafnia (HfO2), this emerging ferroelectrics have been considered promising for the next-generation semiconductor devices with their characteristic nonvolatile data storage. The robust ferroelectricity in the sub-10-nm thickness regime has been p...

주제어

표/그림 (8)

참고문헌 (38)

  1. M. H. Park,Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Muller, A. Kersch, U. Schroeder, T. Mikolajick, C. S. Hwang, Ferroelectricity and antiferroelectricity of doped thin HfO 2 -based films, Adv. Mater., 27 (2015) 1811-1831. 

  2. T. S. Boscke, J. Muller, D. Brauhaus, U. Schroder, U. Bottger, Ferroelectricity in hafnium oxide thin films, Appl. Phys. Lett., 99 (2011) 102903. 

  3. O. Ohtaka, H. Fukui, T.Kunisada, T. Fujisawa, K. Funakoshi, W. Utsumi, T. Irifune, K. Kuroda, T. Kikegawa, Phase relations and volume changes of hafnia under high pressure and high temperature, J. Am. Ceram. Soc., 84 (2004) 1369-1373. 

  4. J. Muller, E. Yurchuk, T. Schlosser, J. Paul, R. Hoffmann, S. Muller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. Seidel, P. Kucher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schroder, T. Mikolajick, Ferroelectricity in HfO 2 enables nonvolatile data storage in 28 nm HKMG, 2012 Symp. VLSI Technol., (2012) 25-26. 

  5. J. Muller, T. S. Boscke, S. Muller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk, K. Khullar, A. Kersch, W. Weinreich, S. Riedel, K. Seidel, A. Kumar, T. M. Arruda, S. V. Kalinin, T. Schlosser, R. Boschke, R. van Bentum, U. Schroder, T. Mikolajick, Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories, 2013 IEEE Int. Electron Devices Meet., (2013) 10.8.1-10.8.4. 

  6. K. Florent, M. Pesic, A. Subirats, K. Banerjee, S. Lavizzari, A. Arreghini, L. Di Piazza, G. Potoms, F. Sebaai, S. R. C. McMitchell, M. Popovici, G. Groeseneken, J. Van Houdt, Vertical ferroelectric HfO 2 FET based on 3-D NAND architecture: towards dense low-power memory, 2018 IEEE Int. Electron Devices Meet., (2018) 2.5.1-2.5.4. 

  7. J. Okuno, T. Kunihiro, K. Konishi, H. Maemura, Y. Shuto, F. Sugaya, M. Materano, T. Ali, K. Kuehnel, K. Seidel, U. Schroeder, T. Mikolajick, M. Tsukamoto, T. Umebayashi, SoC compatible 1T1C FeRAM memory array based on ferroelectric Hf 0.5 Zr 0.5 O 2 , 2020 IEEE Symp. VLSI Technol., (2020) 1-2. 

  8. S. C. Chang, N. Haratipour, S. Shivaraman, T. L Brown-Heft, J. Peck, C. C. Lin, I. C. Tung, D. R Merrill, H. Liu, C. Y. Lin, F. Hamzaoglu, M. V Metz, I. A Young, J. Kavalieros, U. E Avci, Anti-ferroelectric Hf x Zr 1-x O 2 capacitors for High-density 3-D Embedded-DRAM, 2020 IEEE Int. Electron Devices Meet., (2020) 28.1.1-28.1.4. 

  9. M. Sung, K. Rho, J. Kim, J. Cheon, K. Choi, D. Kim, H. Em, G. Park, J. Woo, Y. Lee, J. Ko, M. Kim, G. Lee, S. W. Ryu, D. S. Sheen, Y. Joo, S. Kim, C. H. Cho, M. H. Na, J. Kim, Low voltage and high speed 1Xnm 1T1C FE-RAM with ultra-thin 5nm HZO, 2021 IEEE Int. Electron Devices Meet., (2021) 33.3.1-33.3.4. 

  10. S. Yoon, S. I. Hong, G. Choi, D. Kim, I. Kim, S. M. Jeon, C. Kim, K. Min, Highly stackable 3D ferroelectric NAND devices: beyond the charge trap based memory, 2022 IEEE Int. Memory Workshop (2022) 1-4. 

  11. S. Fujii, Y. Kamimuta, T. Ino, Y. Nakasaki, R. Takaishi, M. Saitoh, First demonstration and performance improvement of ferroelectric HfO 2 -based resistive switch with low operation current and intrinsic diode property, 2016 IEEE Symp. VLSI Technol., (2016) 1-2. 

  12. V. Cremers, R. L. Puurunen, J. Dendooven, Conformality in atomic layer deposition: Current status overview of analysis and modelling, Appl. Phys. Rev., 6 (2019) 021302. 

  13. H. Kim, Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom., 21 (2003) 2231. 

  14. H. A. Hsain, Y. Lee, M. Materano, T. Mittmann, A. Payne, T. Mikolajick, U. Schroeder, G. N. Parsons, J. L. Jones, Many routes to ferroelectric HfO 2 : A review of current deposition methods, J. Vac. Sci. Technol., A 40 (2022) 010803. 

  15. A. Chouprik, D. Negrov, E. Y. Tsymbal, A. Zenkevich, Defects in ferroelectric HfO 2 , Nanoscale, 13 (2021) 11635-11678. 

  16. M. Materano, P. D. Lomenzo, A. Kersch, M. H. Park, T. Mikolajick, U. Schroeder, Interplay between oxygen defects and dopants: effect on structure and performance of HfO 2 -based ferroelectrics, Inorg. Chem. Front., 8 (2021) 2650-2672. 

  17. K. D. Kim, M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, Y. H. Lee, S. D. Hyun, T. Gwon, C. S. Hwang, Ferroelectricity in undoped-HfO 2 thin films induced by deposition temperature control during atomic layer deposition, J. Mater. Chem., C 4 (2016) 6864-6872. 

  18. J. Liao, B. Zeng, Q. Sun, Q. Chen, M. Liao, C. Qiu, Z. Zhang, Y. Zhou, Grain size engineering of ferroelectric Zr-doped HfO 2 for the highly scaled devices applications, IEEE Electron Device Lett., 40 (2019) 1868-1871. 

  19. B. S. Kim, S. D. Hyun, T. Moon, K. D. Kim, Y. H. Lee, H. W. Park, Y. B. Lee, J. Roh, B. Y. Kim, H. H. Kim, M. H. Park, C. S. Hwang, A comparative study on the ferroelectric performances in atomic layer deposited Hf 0.5 Zr 0.5 O 2 thin films using tetrakis(ethylmethylamino) and tetrakis(dimethylamino) precursors, Nanoscale Res. Lett., 15 (2020) 72. 

  20. M. Materano, T. Mittmann, P. D. Lomenzo, C. Zhou, J. L. Jones, M. Falkowski, A. Kersch, T. Mikolajick, U. Schroeder, Influence of oxygen content on the structure and reliability of ferroelectric Hf x Zr 1-x O 2 layers, ACS Appl. Electron. Mater., 2 (2020) 3618-3626. 

  21. T. Mittmann, M. Materano, S. C. Chang, I. Karpov, T. Mikolajick, U. Schroeder, Impact of oxygen vacancy content in ferroelectric HZO films on the device performance, 2020 IEEE Int. Electron Devices Meet., (2020) 18.4.1-18.4.4. 

  22. J. Y. Park, K. Yang, D. H. Lee, S. H. Kim, Y. Lee, P. R. S. Reddy, J. L. Jones, M. H. Park, A perspective on semiconductor devices based on fluorite-structured ferroelectrics from the materials-device integration perspective, J. Appl. Phys., 128 (2020) 240904. 

  23. M. L. Green, M. Y. Ho, B. Busch, G. D. Wilk, T. Sorsch, T. Conard, B. Brijs, W. Vandervorst, P. I. Raisanen, D. Muller, M. Bude, J. Grazul, Nucleation and growth of atomic layer deposited HfO 2 gate dielectric layers on chemical oxide (Si-O-H) and thermal oxide (SiO 2 or Si-O-N) underlayers. J. Appl. Phys., 92 (2002) 7168-7174. 

  24. Y. Han, H. Duan, C. Zhou, H. Meng, Q. Jiang, B. Wang, W. Yan, R. Zhang, Stabilizing cobalt single atoms via flexible carbon membranes as bifunctional electrocatalysts for binder-free zinc-air Batteries, Nano Lett., 22 (2022) 2497-2505. 

  25. 김호현, Discrete Feeding Method 활용을 통한 Hf 1-x Zr x O 2 박막의 전기적 특성 향상 연구, 서울대학교 대학원, 서울, (2020) 44, 75 

  26. Suraj S Cheema et al, Ultrathin ferroic HfO 2 -ZrO 2 superlattice gate stack for advanced transistors, Nature 604 (2022) 65-71. 

  27. D. Lehninger, R. Olivo, T. Ali, M. Lederer, T. Kampfe, C. Mart, K. Biedermann, K. Kuhnel, L. Roy, M. Kalkani, K. Seidel, Back-end-of-line compatible low-temperature furnace anneal for ferroelectric hafnium zirconium oxide formation, Phys. Status Solidi, A 217 (2020) 1900840. 

  28. Y. Lee, S. M. George, Thermal atomic layer etching of HfO 2 using HF for fluorination and TiCl4 for ligand-exchange, J. Vac. Sci. Technol., A 36 (2018) 061504 . 

  29. M. Hoffmann, J. A. Murdzek, S. M. George, S. Slesazeck, U. Schroeder, T. Mikolajick, Atomic layer etching of ferroelectric hafnium zirconium oxide thin films enables giant tunneling electroresistance, Appl. Phys. Lett, 120 (2022) 122901. 

  30. N. Gong, T. P. Ma, A study of endurance issues in HfO 2 -based ferroelectric field effect transistors: charge trapping and trap generation, IEEE Electron Device Lett., 39 (2018) 15-18. 

  31. K. Ni, P. Sharma, J. Zhang, M. Jerry, J. A. Smith, K. Tapily, R. Clark, S. Mahapatra, S. Datta, Critical role of interlayer in Hf 0.5 Zr 0.5 O 2 ferroelectric FET nonvolatile memory performance, IEEE Trans. Electron Devices, 65 (2018) 2461-2469. 

  32. T. Ali, P. Polakowski, S. Riedel, T. Buttner, T. Kampfe, M. Rudolph, B. Patzold, K. Seidel, D. Lohr, R. Hoffmann, M. Czernohorsky, K. Kuhnel, P. Steinke, J. Calvo, K. Zimmermann, J. Muller, High endurance ferroelectric hafnium oxide-based FeFET memory without retention penalty, IEEE Trans. Electron Devices, 65 (2018) 3769-3774. 

  33. A. J. Tan, Y. H. Liao, L. C. Wang, N. Shanker, J. H. Bae, C. Hu, S. Salahuddin, Ferroelectric HfO 2 memory transistors with High-κ interfacial layer and write endurance exceeding 10 10 cycles, IEEE Electron Device Lett., 42 (2021) 994-997. 

  34. C. Y. Chan, K. Y. Chen, H. K. Peng, Y. H. Wu, FeFET memory featuring large memory window and robust endurance of long-pulse cycling by interface engineering using high-k AlON, 2020 Symp. VLSI Technol., (2020) 1-2. 

  35. S. H. Kim, G. T. Yu, G. H. Park, D. H. Lee, J. Y. Park, K. Yang, E. B. Lee, J. I. Lee, M. H. Park, Interfacial engineering of a Mo/Hf 0.3 Zr 0.7 O 2 /Si capacitor using the direct scavenging effect of a thin Ti layer, Chem. Commun, 57 (2021), 12452-12455. 

  36. Y. Lee, H. A. Hsain, S. S. Fields, S. T. Jaszewski, M. D. Horgan, P. G. Edgington, J. F. Ihlefeld, G. N. Parsons, J. L. Jones, Unexpectedly large remanent polarization of Hf 0.5 Zr 0.5 O 2 metal-ferroelectric-metal capacitor fabricated without breaking vacuum, Appl. Phys. Lett., 118 (2021) 012903. 

  37. Y. Liang et al., ZrO 2 -HfO 2 superlattice ferroelectric capacitors with optimized annealing to achieve extremely high holarization stability, IEEE Electron Device Lett., 43 (2022) 1451-1454. 

  38. G. N. Parsons, R. D. Clark, Area-selective deposition: fundamentals, applications, and future outlook, Chem. Mater., 32 (2020) 4920-4953. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로