$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

전고체 리튬 이차전지용 합금계 음극 소재의 연구 동향
Recent Progress of Alloy-Based All-Solid-State Li-Ion Battery Anodes 원문보기

Corrosion science and technology, v.22 no.6, 2023년, pp.466 - 477  

윤정명 (금오공과대학교 신소재공학과) ,  박철민 (금오공과대학교 신소재공학과)

Abstract AI-Helper 아이콘AI-Helper

The increasing demand for high-performance energy storage systems has highlighted the limitations of conventional Li-ion batteries (LIBs), particularly regarding safety and energy density. All-solid-state batteries (ASSBs) have emerged as a promising next-generation energy storage system, offering t...

주제어

표/그림 (7)

참고문헌 (53)

  1. D. P. Finegan, M. Scheel, J. B. Robinson, B. Tjaden, I.?Hunt, T. J. Mason, J. Millichamp, M. D. Michiel, G. J.?Offer, G. Hinds, D. J. L. Brett, P. R. Shearing, In-operando high-speed tomography of lithium-ion batteries during thermal runaway, Nature Communications, 6,?6924 (2015). Doi: https://doi.org/10.1038/ncomms7924 

  2. K. Takada, T. Inada, A. Kajiyama, M. Kouguchi, H.?Sasaki, S. Kondo, Y. Michiue, S. Nakano, M. Tabuchi,?M. Watanabe, Solid state batteries with sulfide-based?solid electrolytes, Solid State Ionics, 172, 25 (2004). Doi:?https://doi.org/10.1016/j.ssi.2004.02.027 

  3. J. B. Goodenough, K.-S. Park, The Li-Ion Rechargeable?Battery: A Perspective, Journal of the American Chemical Society, 135, 1167 (2013). Doi: https://doi.org/10.1021/ja3091438 

  4. Q. Zhao, S. Stalin, C.-Z. Zhao, L. A. Archer, Designing?solid-state electrolytes for safe, energy-dense batteries,?Nature Reviews Materials, 5, 229 (2020). Doi: https://doi.org/10.1038/s41578-019-0165-5 

  5. J. Trevey, J. S. Jang, Y. S. Jung, C. R. Stoldt, S.-H. Lee,?Glass-ceramic Li2S-P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium-ion batteries, Electrochemistry Communications, 11, 1830 (2009). Doi: https://doi.org/10.1016/j.elecom.2009.07.028 

  6. A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nature reviews?materials, 2, 16103 (2017). Doi: https://doi.org/10.1038/natrevmats.2016.103 

  7. Y. Lu, C.-Z. Zhao, J.-K. Hu, S. Sun, Q. Zhang, The void?formation behaviors in working solid-state Li metal batteries, Science Advances, 8, eadd0510 (2022). Doi: https://doi.org/10.1126/sciadv.add0510 

  8. J. Kasemchainan, S. Zekoll, D. S. Jolly, Z. Ning, G. O.?Hartley, J. Marrow, P. G. Bruce, Critical stripping current?leads to dendrite formation on plating in lithium anode?solid electrolyte cells. Nature Materials, 18, 1105 (2019).?Doi: https://doi.org/10.1038/s41563-019-0438-9 

  9. S. Yu, D. J. Siegel, Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration through?Stiff Solid Electrolytes, ACS Applied Materials & Interfaces, 10, 38151 (2018). Doi: https://doi.org/10.1021/acsami.8b17223 

  10. C. Zor, S. H. Turrell, M. S. Uyanik, S. Afyon, Lithium?Plating and Stripping: Toward Anode-FreeSolid-State Batteries, Advanced Energy & Sustainability Research, 2300001?(2023). Doi: https://doi.org/10.1002/aesr.202300001 

  11. F. N. Jiang, S. J. Yang, H. Liu, X.-B. Cheng, L. Liu, R.?Xiang, Q. Zhang, S. Kaskel, J. Q. Huang, Mechanism?understanding for stripping electrochemistry of Li metal?anode, SusMat, 1, 506 (2021). Doi: https://doi.org/10.1002/sus2.37 

  12. C. Yang, H. Xie, W. Ping, K. Fu, B. Liu, J. Rao, J. Dai, C.?Wang, G. Pastel, L. Hu, An electron/ion dual-conductive?alloy framework for high-rate and high-capacity solid-state?lithium-metal batteries. Advanced Materials, 31, 1804815?(2019). Doi: https://doi.org/10.1002/adma.201804815 

  13. Y. Lu, C.-Z. Zhao, H. Yuan, X.-B. Cheng, J.-Q. Huang,?Q. Zhang, Critical Current Density in Solid-State Lithium Metal Batteries: Mechanism, Influences, and Strategies, Advanced Functional Materials, 31, 2009925?(2021). Doi: https://doi.org/10.1002/adfm.202009925 

  14. K. Takada, T. Inada, A. Kajiyama, H. sasaki, S. Kondo,?M. Watanabe, M. Murayama, R. Kanno, Solid-state lithium battery with graphite anode, Solid State Ionics, 158, 269?(2003). Doi: https://doi.org/10.1016/S0167-2738(02)00823-8 

  15. N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, T.?Sasaki, Enhancement of the High-Rate Capability of?Solid-State Lithium Batteries by Nanoscale Interfacial?Modification, Advanced Materials, 18, 2226 (2006). Doi:?https://doi.org/10.1002/adma.200502604 

  16. L. Holtschi, C. N. Borca, T. Huthwelker, F. Marone, C.?M. Schleputz, V.Pele, C. Jordy, C. Villevieille, M. E.?Kazzi, P. Novak, Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries,?Electrochimica Acata, 389, 138735 (2021). Doi: https://doi.org/10.1016/j.electacta.2021.138735 

  17. H. Wang, Y. Zhu, S. C. Kim, A. Pei, Y. Li, D. T. Boyle,?H. Wang, Z. Zhang, Y. Ye, W. Huang, Y. Liu, J. Xu, J. Li,?F. Liu, Y. Cui, Underpotential lithium plating on graphite?anodes caused by temperature heterogeneity, Proceedings of the National Academy of Sciences, 117, 29453?(2020). Doi: https://doi.org/10.1073/pnas.2009221117 

  18. T. Waldmann, B.-I. Hogg, M. Wohlfahrt-Mehrens, Li plating as unwanted side reaction in commercial Li-ion cells -?A review, Journal of Power Sources, 384, 107 (2018). Doi:?https://doi.org/10.1016/j.jpowsour.2018.02.063 

  19. N. Suzuki, N. Yashiro, S. Fujiki, R. Omoda, T. Shiratsuchi, T. Watanabe, Y. Aihara, Highly Cyclable All-SolidState Battery with Deposition-Type Lithium Metal?Anode Based on Thin Carbon Black Layer, Advanced?Energy & Sustainability Research, 2, 210066 (2021).?Doi: https://doi.org/10.1002/aesr.202100066 

  20. J. G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates,?O. Kwon, M. J. Choi, H. Y. Chung, S. Park, A review of?lithium and non-lithium based solid state batteries, Journal of Power Sources, 282, 299 (2015). Doi: https://doi.org/10.1016/j.jpowsour.2015.02.054 

  21. C.-M. Park, J.-H. Kim, H. Kim, H.-J. Sohn, Li-alloy?based anode materials for Li secondary batteries, Chemical Society Reviews, 39, 3115 (2010). Doi: https://doi.org/10.1039/B919877F 

  22. M. N. Obrovac, V. L. Chevrier, Alloy Negative Electrodes for Li-Ion Batteries, Chemical Reviews, 114,?11444 (2014). Doi: https://doi.org/10.1021/cr500207g 

  23. Y. Huang, B. Shao, F. Han, Li alloy anodes capacity for?high-rate and high-areal-solid-state batteries, Journal of?Materials Chemistry A, 10, 12350 (2022). Doi: https://doi.org/10.1039/D2TA02339C 

  24. A. L. Santhosha, L. Medenbach, J. R. Buchheim, P. Adelhelm, The Indium-Lithium electrode in solid-state lithium ion batteries: Phase formation, redox potentials and?interface stability, Batteries & Supercaps, 2, 524 (2019).?Doi: https://doi.org/10.1002/batt.201800149 

  25. Y. Lu, C.-Z. Zhao, R. Zhang, H. Yuan, L.-P. Hou, Z.-H.?Fu, X. Chen, J.-Q. Huang, Q. Zhang, The carrier transition from Li atoms to Li vacancies in solid-state lithium?alloy anodes, Science advances, 7, eabi5520 (2021). Doi:?https://doi.org/10.1126/sciadv.abi5520 

  26. D. Cao, X. Sun, Y. Li, A. Anderson, W. Lu, H. Zhu, L?Long-Cycling Sulfide-Based All-Solid-State Batteries?Enabled by Electrochemo-Mechanically Stable Electrodes, Advanced Materials, 34, 2200401 (2022). Doi:?https://doi.org/10.1002/adma.202200401 

  27. S. Luo, Z. Wang, X. Li, X. Liu, H. Wang, W. Ma, L.?Zhang, L. Zhu, X. Zhang, Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes, Nature Communications, 12, 6968?(2021). Doi: https://doi.org/10.1038/s41467-021-27311-7 

  28. H. Pan, M. Zhang, Z. Cheng, H. Jiang, J. Yang, P. Wang,?P. He, H. Zhou, Carbon-free and binder-free Li-Al alloy?anode enabling an all-solid-state Li-S battery with high?energy and stability, Science Advances, 8, eabn4372?(2022). Doi: https://doi.org/10.1126/sciadv.abn4372 

  29. Y. Liu, C. Wang, S. G. Yoon, S. Y. Han, J. A. Lewis, D.?Prakash, E. J. Klein, T. Chen, D. H. Kang, D. Majumdar,?R. Gopalaswamy, M. T. McDowell, Alluminum foil negative electrodes with multiphase microstructure for allsolid-state Li-ion batteries, Nature Communications, 14, 3975 (2023). Doi: https://doi.org/10.1038/s41467-023-39685-x 

  30. C. Hansel, B. Singh, P. Canepa, D. Kundu, Favorable?Interfacial Chemomechanics Enables Stable Cycling of?High Li-Content Li-In/Sn Anodes in Sulfide Electrolyte?Based Solid-State Batteries, Chemistry of Materials, 33,?6029 (2021). Doi: https://doi.org/10.1021/acs.chemmater.1c01431 

  31. R. Kanno, M. Murayama, T. Inada, T. Kobayashi, K.?Sakamoto, N. Sonoyama, A. Yamada, S. Kondo, A Self-Assembled Breathing Interface for All-Solid-State?Ceramic Lithium Batteries, Electrochemical and solid-state letters, 7, A455 (2004). Doi: https://doi.org/10.1149/1.1809553 

  32. T. kobayashi, A. yamada, R. Kanno, Interfacial reactions?at electrode/electrolyte boundary in all solid-state lithium?battery using inorganic solid electrolyte, thio-LISICON,?Electrochimica Acta, 53, 5045 (2008). Doi: https://doi.org/10.1016/j.electacta.2008.01.071 

  33. C. Yu, L. van Eijck, S. Ganapathy, M. Wagemaker, Synthesis, structure and electrochemical performance of the?argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state?batteries, Electrochimica Acta, 215, 93 (2016). Doi:?https://doi.org/10.1016/j.electacta.2016.08.081 

  34. Q. Yang, C. Li, Li metal batteries and solid state batteries?benefiting from halogen-based strategies, Energy Storage Materials, 14, 100 (2018). Doi: https://doi.org/10.1016/j.ensm.2018.02.017 

  35. H. J. Bang, S. Kim, J. Prakash, Electrochemical investigations of lithium-aluminum alloy anode in Li/polymer?cells, Journal of Power Sources, 92, 45 (2001). Doi:?https://doi.org/10.1016/S0378-7753(00)00522-X 

  36. H. Wang, H. Tan, X. Luo, H, Wang, T. Ma, M. Lv, X.?Song, S. Jin, X. Chang, X. Li, The progress on aluminum-based anode materials for lithium-ion batteries,?Journal of Materials Chemistry A, 8, 25649 (2020). Doi:?https://doi.org/10.1039/D0TA09762D 

  37. J. Gu, Z. Liang, J. Shi, Y. Yang, Electrochemo-Mechanical Stresses and Their Measurements in Sulfide-Based?All-Solid-State Batteries: A Review, Advanced Energy?Materials, 13, 2203153 (2023). Doi: https://doi.org/10.1002/aenm.202203153 

  38. S. Y. Han, C. Lee, J. A. Lewis, D. Yeh, Y. Liu, H.-W.?Lee, M. T. McDowell, Stress evolution during cycling of?alloy-anode solid-state batteries, Joule, 5, 2450 (2021).?Doi: https://doi.org/10.1016/j.joule.2021.07.002 

  39. C. Chen, M. Jiang, T. Zhou, L. Raijmakers, E. Vezhlev,?B. Wu, T. U. Schulli, D. L. Danilov, Y. Wei, R.-A. Eichel,?P. H. L. Notten, Interface Aspects in All-Solid-State Li-Based Batteries Reviewed, Advanced Energy Materials,?11, 2003939 (2021). Doi: https://doi.org/10.1002/aenm.202003939 

  40. U. Kasavajjula, C. Wang, A. J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary?cells, Journal of Power Sources, 163, 1003 (2007). Doi:?https://doi.org/10.1016/j.jpowsour.2006.09.084 

  41. H. Kim, M. Seo, M.-H. Park, J. Cho, A Critical Size of?Silicon Nano-Anodes for Lithium Rechargeable Batteries, Angewandte Chemie International Edition, 49, 2146?(2010). Doi: https://doi.org/10.1002/anie.200906287 

  42. Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Challenges and?Recent Progress in the Development of Si Anodes for Lithium-Ion Battery, Advanced Energy Materials, 7, 1700715?(2017). Doi: https://doi.org/10.1002/aenm.201700715 

  43. D. H. S. Tan, Y.-T. Chen, H. Yang, W. Bao, B. Sreenarayanan, J.-M. Doux, W. Li, B. Lu, S.-Y. Ham, B.?Sayahpour, J. Scharf, E. A. Wu, G. Deysher, H. E. Han,?H. J. Hah, H. Jeong, J. B. Lee, Z. Chen, Y. S. Meng, Carbon-free high-loading silicon anodes enabled by sulfide?solid electrolytes, Science, 373, 1494 (2021). Doi: https://doi.org/10.1126/science.abg7217 

  44. W. Yan, Z. Mu, Z. Wang, Y. Huang, D. Wu, P. Lu, J. Lu,?J. Xu, Y. Wu, T. Ma, M. Yang, X. Zhu, Y. Xia, S. Shi, L.?Chen, H. Li, F. Wu, Hard-carbon-stabilized Li-Si anodes?for high-performance all-solid-state Li-ion batteries,?Nature Energy, 8, 800 (2023). Doi: https://doi.org/10.1038/s41560-023-01279-8 

  45. R. Miyazaki, T. Hihara, Charge-discharge performances?of Sn powder as a high capacity anode for all-solid-state?lithium batteries, Journal of Powder Sources, 427, 15?(2019). Doi: https://doi.org/10.1016/j.jpowsour.2019.04.068 

  46. G. Maresca, A. Tsurumaki, N. Suzuki, K. Yoshida, S.?Panero, Y. Aihara, M. A. Navarra, Sn/C composite?anodes for bulk-type all-solid-state batteries, Electrochimica Acta, 395, 139104 (2021). Doi: https://doi.org/10.1016/j.electacta.2021.139104 

  47. T. Palaniselvam, A. I. Freytag, H. Moon, K. A. Janssen, S.?Passerini, P. Adelhelm, Tin-Graphite Composite as a?High-Capacity Anode for All-Solid-State Li-Ion Batteries, The Journal of Physical Chemistry C, 126, 13043?(2022). Doi: https://doi.org/10.1021/acs.jpcc.2c04024 

  48. S. M. Beladi-Mousavi, M. Pumera, 2D-Pnictogens:?alloy-based anode battery materials with ultrahigh?cycling stability, Chemical Society Reviews, 47, 6964 (2018). Doi: https://doi.org/10.1039/C8CS00425K 

  49. C.-M. Park, H.-J. Sohn, Black Phosphorus and its Composite for Lithium Rechargeable Batteries, Advanced?Materials, 19, 2465 (2007). Doi: https://doi.org/10.1002/adma.200602592 

  50. J. Yang, F. Mo, L. Huang, H. Liang, G. Sun, S. Peng,?Building a C-P bond to unlock the reversible and fast lithium?storage performance of black phosphorus in all-solid-state?lithium-ion batteries, Materials Today Energy, 20, 100662?(2021). Doi: https://doi.org/10.1016/j.mtener.2021.100662 

  51. S. Afyon, K. V. Kravchyk, S. Wang, J. van den Broek, C.?Hansel, M. V. Kovalenko, J. L. M. Rupp, Building better allsolid-state batteries with Li garnet solid electrolytes and metalloid anodes, Journal of Materials Chemistry A, 7, 21299?(2019). Doi: https://doi.org/10.1039/C9TA04999A 

  52. F. Mo, J. Ruan, W. Fu, B. Fu, J. Hu, Z. Lian, S. Li, Y.?Song, Y.-N. Zhou, F. Fang, G. Sun, S. Peng, D. Sun,?Revealing the Role of Liquid Metals at the Anode-Electrolyte Interface for All Solid-State Lithium-Ion Batteries, ACS Applied Materials & Interfaces, 12, 38232?(2020). https://doi.org/10.1021/acsami.0c11001 

  53. K. Sharma, R. Singh, T. Ichikawa, M. Kumar, A. Jain,?Lithiation mechanism of antimony chalcogenides (Sb 2 X 3 ;?X S, Se, Te) electrodes for high-capacity all-solid-state?Li-ion battery, International Journal of Energy Research,?45, 11135 (2021). Doi: https://doi.org/10.1002/er.6596 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로