$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

허혈성 뇌졸중의 진단, 치료 및 예후 예측에 대한 기계 학습의 응용: 서술적 고찰
Machine learning application in ischemic stroke diagnosis, management, and outcome prediction: a narrative review 원문보기

The Journal of Medicine and Life Science = 의생명과학, v.20 no.4, 2023년, pp.141 - 157  

은미연 (경북대학교 의과대학 칠곡경북대학교병원 신경과) ,  전은태 (고려대학교 의과대학 고려대학교안산병원 신경과) ,  정진만 (고려대학교 의과대학 고려대학교안산병원 신경과)

Abstract AI-Helper 아이콘AI-Helper

Stroke is a leading cause of disability and death. The condition requires prompt diagnosis and treatment. The quality of care provided to patients with stroke can vary depending on the availability of medical resources, which in turn, can affect prognosis. Recently, there has been growing interest i...

주제어

참고문헌 (123)

  1. Aho K, Harmsen P, Hatano S, Marquardsen J, Smirnov VE, Strasser T. Cerebrovascular disease in the community: results of a WHO?collaborative study. Bull World Health Organ 1980;58:113-30. 

  2. GBD 2016 Stroke Collaborators. Global, regional, and national?burden of stroke, 1990-2016: a systematic analysis for the Global?Burden of Disease Study 2016. Lancet Neurol 2019;18:439-58. 

  3. Saver JL. Time is brain--quantified. Stroke 2006;37:263-6. 

  4. Sanelli PC, Sykes JB, Ford AL, Lee JM, Vo KD, Hallam DK.?Imaging and treatment of patients with acute stroke: an evidence-based review. AJNR Am J Neuroradiol 2014;35:1045-51. 

  5. Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin?E, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging?evaluation for understanding stroke evolution (DEFUSE) study.?Ann Neurol 2006;60:508-17. 

  6. Meinel TR, Kaesmacher J, Mosimann PJ, Seiffge D, Jung S, Mordasini P, et al. Association of initial imaging modality and futile?recanalization after thrombectomy. Neurology 2020;95:e2331-42. 

  7. Naylor J, Churilov L, Chen Z, Koome M, Rane N, Campbell BCV.?Reliability, reproducibility and prognostic accuracy of the alberta?stroke program early CT score on CT perfusion and non-contrast?CT in hyperacute stroke. Cerebrovasc Dis 2017;44:195-202. 

  8. Babiarz LS, Yousem DM. Quality control in neuroradiology: discrepancies in image interpretation among academic neuroradiologists. AJNR Am J Neuroradiol 2012;33:37-42. 

  9. Ye H, Gao F, Yin Y, Guo D, Zhao P, Lu Y, et al. Precise diagnosis?of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. Eur Radiol?2019;29:6191-201. 

  10. Winzeck S, Mocking SJT, Bezerra R, Bouts MJRJ, McIntosh?EC, Diwan I, et al. Ensemble of convolutional neural networks?improves automated segmentation of acute ischemic lesions using?multiparametric diffusion-weighted MRI. AJNR Am J Neuroradiol?2019;40:938-45. 

  11. Chen L, Bentley P, Rueckert D. Fully automatic acute ischemic?lesion segmentation in DWI using convolutional neural networks.?Neuroimage Clin 2017;15:633-43. 

  12. Wang J, Gong X, Chen H, Zhong W, Chen Y, Zhou Y, et al. Causative classification of ischemic stroke by the machine learning?algorithm random forests. Front Aging Neurosci 2022;14:788637. 

  13. Amukotuwa SA, Straka M, Dehkharghani S, Bammer R. Fast?automatic detection of large vessel occlusions on CT angiography.?Stroke 2019;50:3431-8. 

  14. Elijovich L, Dornbos Iii D, Nickele C, Alexandrov A, Inoa-Acosta?V, Arthur AS, et al. Automated emergent large vessel occlusion detection by artificial intelligence improves stroke workflow in a hub?and spoke stroke system of care. J Neurointerv Surg 2022;14:704-8. 

  15. Heo J, Yoon JG, Park H, Kim YD, Nam HS, Heo JH. Machine?learning-based model for prediction of outcomes in acute stroke.?Stroke 2019;50:1263-5. 

  16. Nishi H, Oishi N, Ishii A, Ono I, Ogura T, Sunohara T, et al. Predicting clinical outcomes of large vessel occlusion before mechanical thrombectomy using machine learning. Stroke 2019;50:2379-88. 

  17. Rajashekar D, Hill MD, Demchuk AM, Goyal M, Fiehler J, Forkert ND. Prediction of clinical outcomes in acute ischaemic stroke?patients: a comparative study. Front Neurol 2021;12:663899. 

  18. Lee EJ, Kim YH, Kim N, Kang DW. Deep into the brain: artificial?intelligence in stroke imaging. J Stroke 2017;19:277-85. 

  19. Mokli Y, Pfaff J, Dos Santos DP, Herweh C, Nagel S. Computer-aided imaging analysis in acute ischemic stroke - background?and clinical applications. Neurol Res Pract 2019;1:23. 

  20. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;?521:436-44. 

  21. Zhang Y, Kang B, Hooi B, Yan S, Feng J. Deep long-tailed?learning: a survey. IEEE Trans Pattern Anal Mach Intell 2023;?45:10795-816. 

  22. Geirhos R, Jacobsen JH, Michaelis C, Zemel R, Brendel W, Bethge?M, et al. Shortcut learning in deep neural networks. Nat Mach Intell 2020;2:665-73. 

  23. Li H, Li J, Guan X, Liang B, Lai Y, Luo X. Research on overfitting of deep learning. In: 2019 15th International Conference on?Computational Intelligence and Security (CIS); 2019 Dec 13-16;?Macao, China. Piscataway (NJ): IEEE; c2019. pp. 78-81. 

  24. de Hond AAH, Leeuwenberg AM, Hooft L, Kant IMJ, Nijman?SWJ, van Os HJA, et al. Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping?review. NPJ Digit Med 2022;5:2. 

  25. Yedavalli VS, Tong E, Martin D, Yeom KW, Forkert ND. Artificial?intelligence in stroke imaging: current and future perspectives. Clin?Imaging 2021;69:246-54. 

  26. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith?SM. FSL. Neuroimage 2012;62:782-90. 

  27. Fischl B. FreeSurfer. Neuroimage 2012;62:774-81. 

  28. Briard JN, Zewude RT, Kate MP, Rowe BH, Buck B, Butcher K,?et al. Stroke mimics transported by emergency medical services?to a comprehensive stroke center: the magnitude of the problem. J?Stroke Cerebrovasc Dis 2018;27:2738-45. 

  29. Goyal N, Male S, Al Wafai A, Bellamkonda S, Zand R. Cost burden of stroke mimics and transient ischemic attack after intravenous tissue plasminogen activator treatment. J Stroke Cerebrovasc?Dis 2015;24:828-33. 

  30. Lee S, Jeong B, Kim M, Jang R, Paik W, Kang J, et al. Emergency?triage of brain computed tomography via anomaly detection with a?deep generative model. Nat Commun 2022;13:4251. 

  31. Titano JJ, Badgeley M, Schefflein J, Pain M, Su A, Cai M, et al.?Automated deep-neural-network surveillance of cranial images for?acute neurologic events. Nat Med 2018;24:1337-41. 

  32. Sahoo PK, Mohapatra S, Wu CY, Huang KL, Chang TY, Lee TH.?Automatic identification of early ischemic lesions on non-contrast?CT with deep learning approach. Sci Rep 2022;12:18054. 

  33. Lu J, Zhou Y, Lv W, Zhu H, Tian T, Yan S, et al. Identification of?early invisible acute ischemic stroke in non-contrast computed?tomography using two-stage deep-learning model. Theranostics?2022;12:5564-73. 

  34. Kniep HC, Sporns PB, Broocks G, Kemmling A, Nawabi J, Rusche T, et al. Posterior circulation stroke: machine learning-based?detection of early ischemic changes in acute non-contrast CT scans.?J Neurol 2020;267:2632-41. 

  35. Wu O, Winzeck S, Giese AK, Hancock BL, Etherton MR, Bouts?MJRJ, et al. Big data approaches to phenotyping acute ischemic?stroke using automated lesion segmentation of multi-center magnetic resonance imaging data. Stroke 2019;50:1734-41. 

  36. Jeong HG, Kim BJ, Kim T, Kang J, Kim JY, Kim J, et al. Classification of cardioembolic stroke based on a deep neural network?using chest radiographs. EBioMedicine 2021;69:103466. 

  37. Serena J, Davalos A, Segura T, Mostacero E, Castillo J. Stroke on?awakening: looking for a more rational management. Cerebrovasc?Dis 2003;16:128-33. 

  38. Lee H, Lee EJ, Ham S, Lee HB, Lee JS, Kwon SU, et al. Machine?learning approach to identify stroke within 4.5 hours. Stroke?2020;51:860-6. 

  39. Zhu H, Jiang L, Zhang H, Luo L, Chen Y, Chen Y. An automatic?machine learning approach for ischemic stroke onset time identification based on DWI and FLAIR imaging. Neuroimage Clin?2021;31:102744. 

  40. Zhang YQ, Liu AF, Man FY, Zhang YY, Li C, Liu YE, et al. MRI?radiomic features-based machine learning approach to classify?ischemic stroke onset time. J Neurol 2022;269:350-60. 

  41. Jiang L, Wang S, Ai Z, Shen T, Zhang H, Duan S, et al. Development and external validation of a stability machine learning?model to identify wake-up stroke onset time from MRI. Eur Radiol?2022;32:3661-9. 

  42. Malhotra K, Gornbein J, Saver JL. Ischemic strokes due to?large-vessel occlusions contribute disproportionately to stroke-related dependence and death: a review. Front Neurol 2017;8:651. 

  43. Dozois A, Hampton L, Kingston CW, Lambert G, Porcelli TJ,?Sorenson D, et al. PLUMBER study (prevalence of large vessel?occlusion strokes in Mecklenburg County emergency response).?Stroke 2017;48:3397-9. 

  44. Stib MT, Vasquez J, Dong MP, Kim YH, Subzwari SS, Triedman?HJ, et al. Detecting large vessel occlusion at multiphase CT angiography by using a deep convolutional neural network. Radiology?2020;297:640-9. 

  45. Czap AL, Bahr-Hosseini M, Singh N, Yamal JM, Nour M, Parker S,?et al. Machine learning automated detection of large vessel occlusion from mobile stroke unit computed tomography angiography.?Stroke 2022;53:1651-6. 

  46. Sheth SA, Jahan R, Gralla J, Pereira VM, Nogueira RG, Levy EI,?et al. Time to endovascular reperfusion and degree of disability in?acute stroke. Ann Neurol 2015;78:584-93. 

  47. Cimflova P, Golan R, Ospel JM, Sojoudi A, Duszynski C, Elebute I,?et al. Validation of a machine learning software tool for automated?large vessel occlusion detection in patients with suspected acute stroke. Neuroradiology 2022;64:2245-55. 

  48. Rava RA, Peterson BA, Seymour SE, Snyder KV, Mokin M,?Waqas M, et al. Validation of an artificial intelligence-driven large?vessel occlusion detection algorithm for acute ischemic stroke patients. Neuroradiol J 2021;34:408-17. 

  49. Luijten SPR, Wolff L, Duvekot MHC, van Doormaal PJ, Moudrous W, Kerkhoff H, et al. Diagnostic performance of an algorithm?for automated large vessel occlusion detection on CT angiography.?J Neurointerv Surg 2022;14:794-8. 

  50. Rodrigues G, Barreira CM, Bouslama M, Haussen DC, Al-Bayati?A, Pisani L, et al. Automated large artery occlusion detection in?stroke: a single-center validation study of an artificial intelligence?algorithm. Cerebrovasc Dis 2022;51:259-64. 

  51. Seker F, Pfaff JAR, Mokli Y, Berberich A, Namias R, Gerry S, et?al. Diagnostic accuracy of automated occlusion detection in CT?angiography using e-CTA. Int J Stroke 2022;17:77-82. 

  52. Yahav-Dovrat A, Saban M, Merhav G, Lankri I, Abergel E, Eran?A, et al. Evaluation of artificial intelligence-powered identification?of large-vessel occlusions in a comprehensive stroke center. AJNR?Am J Neuroradiol 2021;42:247-54. 

  53. Morey JR, Zhang X, Yaeger KA, Fiano E, Marayati NF, Kellner?CP, et al. Real-world experience with artificial intelligence-based?triage in transferred large vessel occlusion stroke patients. Cerebrovasc Dis 2021;50:450-5. 

  54. Adhya J, Li C, Eisenmenger L, Cerejo R, Tayal A, Goldberg M, et?al. Positive predictive value and stroke workflow outcomes using?automated vessel density (RAPID-CTA) in stroke patients: one?year experience. Neuroradiol J 2021;34:476-81. 

  55. Gao H, Bian Y, Cheng G, Yu H, Cao Y, Zhang H, et al. Identifying?patients with acute ischemic stroke within a 6-h window for the?treatment of endovascular thrombectomy using deep learning and?perfusion imaging. Front Med (Lausanne) 2023;10:1085437. 

  56. Kim YC, Seo WK, Baek IY, Lee JE, Song HN, Chung JW, et al.?Diffusion-weighted imaging-alone endovascular thrombectomy triage in acute stroke: simulating diffusion-perfusion mismatch using?machine learning. J Stroke 2022;24:148-51. 

  57. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours?with selection by perfusion imaging. N Engl J Med 2018;378:708-18. 

  58. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF,?Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a?mismatch between deficit and infarct. N Engl J Med 2018;378:11-21. 

  59. Deutschmann H, Hinteregger N, Wiesspeiner U, Kneihsl M,?Fandler-Hofler S, Michenthaler M, et al. Automated MRI perfusion-diffusion mismatch estimation may be significantly different?in individual patients when using different software packages. Eur?Radiol 2021;31:658-65. 

  60. Pistocchi S, Strambo D, Bartolini B, Maeder P, Meuli R, Michel?P, et al. MRI software for diffusion-perfusion mismatch analysis?may impact on patients' selection and clinical outcome. Eur Radiol?2022;32:1144-53. 

  61. Yu Y, Xie Y, Thamm T, Gong E, Ouyang J, Christensen S, et al.?Tissue at risk and ischemic core estimation using deep learning in?acute stroke. AJNR Am J Neuroradiol 2021;42:1030-7. 

  62. Yu Y, Christensen S, Ouyang J, Scalzo F, Liebeskind DS, Lansberg?MG, et al. Predicting hypoperfusion lesion and target mismatch in?stroke from diffusion-weighted MRI using deep learning. Radiology 2023;307:e220882. 

  63. Venema SMU, Dankbaar JW, van der Lugt A, Dippel DWJ, van?der Worp HB. Cerebral collateral circulation in the era of reperfusion therapies for acute ischemic stroke. Stroke 2022;53:3222-34. 

  64. Wolff L, Venema SMU, Luijten SPR, Hofmeijer J, Martens JM,?et al. Diagnostic performance of an algorithm for automated collateral scoring on computed tomography angiography. Eur Radiol?2022;32:5711-8. 

  65. Jabal MS, Kallmes DF, Harston G, Campeau N, Schwartz K,?Messina S, et al. Automated CT angiography collateral scoring in?anterior large vessel occlusion stroke: a multireader study. Interv?Neuroradiol 2023. (Epub ahead of print) 

  66. Boers AMM, Barros RS, Jansen IGH, Berkhemer OA, Beenen?LFM, Menon BK, et al. Value of quantitative collateral scoring on?CT angiography in patients with acute ischemic stroke. AJNR Am?J Neuroradiol 2018;39:1074-82. 

  67. Gupta AC, Schaefer PW, Chaudhry ZA, Leslie-Mazwi TM,?Chandra RV, Gonzalez RG, et al. Interobserver reliability of baseline noncontrast CT Alberta stroke program early CT score for?intra-arterial stroke treatment selection. AJNR Am J Neuroradiol?2012;33:1046-9. 

  68. Wardlaw JM, Farrall AJ, Perry D, von Kummer R, Mielke O,?Moulin T, et al. Factors influencing the detection of early CT signs?of cerebral ischemia: an internet-based, international multiobserver?study. Stroke 2007;38:1250-6. 

  69. Kuang H, Najm M, Chakraborty D, Maraj N, Sohn SI, Goyal M, et?al. Automated ASPECTS on noncontrast CT scans in patients with?acute ischemic stroke using machine learning. AJNR Am J Neuroradiol 2019;40:33-8. 

  70. Maegerlein C, Fischer J, Monch S, Berndt M, Wunderlich S, Seifert CL, et al. Automated calculation of the Alberta stroke program?early CT score: feasibility and reliability. Radiology 2019;291:141-8. 

  71. Delio PR, Wong ML, Tsai JP, Hinson HE, McMenamy J, Le TQ, et?al. Assistance from automated ASPECTS software improves reader?performance. J Stroke Cerebrovasc Dis 2021;30:105829. 

  72. Austein F, Wodarg F, Jurgensen N, Huhndorf M, Meyne J, Lindner?T, et al. Automated versus manual imaging assessment of early?ischemic changes in acute stroke: comparison of two software packages and expert consensus. Eur Radiol 2019;29:6285-92. 

  73. Goebel J, Stenzel E, Guberina N, Wanke I, Koehrmann M, Kleinschnitz C, et al. Automated ASPECT rating: comparison between?the frontier ASPECT score software and the Brainomix software.?Neuroradiology 2018;60:1267-72. 

  74. Hoelter P, Muehlen I, Goelitz P, Beuscher V, Schwab S, Doerfler A.?Automated ASPECT scoring in acute ischemic stroke: comparison?of three software tools. Neuroradiology 2020;62:1231-8. 

  75. Chen W, Wu J, Wei R, Wu S, Xia C, Wang D, et al. Improving the?diagnosis of acute ischemic stroke on non-contrast CT using deep?learning: a multicenter study. Insights Imaging 2022;13:184. 

  76. Gauriau R, Bizzo BC, Comeau DS, Hillis JM, Bridge CP, Chin?JK, et al. Head CT deep learning model is highly accurate for early?infarct estimation. Sci Rep 2023;13:189. 

  77. Qiu W, Kuang H, Teleg E, Ospel JM, Sohn SI, Almekhlafi M, et al.?Machine learning for detecting early infarction in acute stroke with?non-contrast-enhanced CT. Radiology 2020;294:638-44. 

  78. Purushotham A, Campbell BC, Straka M, Mlynash M, Olivot JM,?Bammer R, et al. Apparent diffusion coefficient threshold for delineation of ischemic core. Int J Stroke 2015;10:348-53. 

  79. Kim YC, Lee JE, Yu I, Song HN, Baek IY, Seong JK, et al. Evaluation of diffusion lesion volume measurements in acute ischemic?stroke using encoder-decoder convolutional network. Stroke?2019;50:1444-51. 

  80. Woo I, Lee A, Jung SC, Lee H, Kim N, Cho SJ, et al. Fully automatic segmentation of acute ischemic lesions on diffusion-weighted imaging using convolutional neural networks: comparison with?conventional algorithms. Korean J Radiol 2019;20:1275-84. 

  81. Wang X, Fan Y, Zhang N, Li J, Duan Y, Yang B. Performance?of machine learning for tissue outcome prediction in acute ischemic stroke: a systematic review and meta-analysis. Front Neurol?2022;13:910259. 

  82. Goyal M, Ospel JM, Menon B, Almekhlafi M, Jayaraman M, Fiehler J, et al. Challenging the ischemic core concept in acute ischemic stroke imaging. Stroke 2020;51:3147-55. 

  83. Liu QC, Jia ZY, Zhao LB, Cao YZ, Ma G, Shi HB, et al. Agreement and accuracy of ischemic core volume evaluated by three?CT perfusion software packages in acute ischemic stroke. J Stroke?Cerebrovasc Dis 2021;30:105872. 

  84. Lu Q, Fu J, Lv K, Han Y, Pan Y, Xu Y, et al. Agreement of three?CT perfusion software packages in patients with acute ischemic?stroke: a comparison with RAPID. Eur J Radiol 2022;156:110500. 

  85. Rava RA, Snyder KV, Mokin M, Waqas M, Zhang X, Podgorsak?AR, et al. Assessment of computed tomography perfusion software?in predicting spatial location and volume of infarct in acute ischemic stroke patients: a comparison of Sphere, Vitrea, and RAPID. J?Neurointerv Surg 2021;13:130-5. 

  86. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L,?Yassi N, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015;372:1009-18. 

  87. Saver JL, Goyal M, Diener HC; SWIFT PRIME Investigators. Stent-Retriever thrombectomy for stroke. N Engl J Med?2015;373:1077. 

  88. Hakim A, Christensen S, Winzeck S, Lansberg MG, Parsons MW,?Lucas C, et al. Predicting infarct core from computed tomography?perfusion in acute ischemia with machine learning: lessons from?the ISLES challenge. Stroke 2021;52:2328-37. 

  89. Kuang H, Qiu W, Boers AM, Brown S, Muir K, Majoie CBLM, et?al. Computed tomography perfusion-based machine learning model?better predicts follow-up infarction in patients with acute ischemic?stroke. Stroke 2021;52:223-31. 

  90. Robben D, Boers AMM, Marquering HA, Langezaal LLCM, Roos?YBWEM, van Oostenbrugge RJ, et al. Prediction of final infarct?volume from native CT perfusion and treatment parameters using?deep learning. Med Image Anal 2020;59:101589. 

  91. Winder AJ, Wilms M, Amador K, Flottmann F, Fiehler J, Forkert?ND. Predicting the tissue outcome of acute ischemic stroke from?acute 4D computed tomography perfusion imaging using temporal?features and deep learning. Front Neurosci 2022;16:1009654. 

  92. Wouters A, Robben D, Christensen S, Marquering HA, Roos?YBWEM, van Oostenbrugge RJ, et al. Prediction of stroke infarct?growth rates by baseline perfusion imaging. Stroke 2022;53:569-77. 

  93. Nazari-Farsani S, Yu Y, Armindo RD, Lansberg M, Liebeskind DS,?Albers G, et al. Predicting final ischemic stroke lesions from initial?diffusion-weighted images using a deep neural network. Neuroimage Clin 2023;37:103278. 

  94. Yu Y, Xie Y, Thamm T, Gong E, Ouyang J, Huang C, et al. Use of?deep learning to predict final ischemic stroke lesions from initial?magnetic resonance imaging. JAMA Netw Open 2020;3:e200772. 

  95. Hong L, Hsu TM, Zhang Y, Cheng X. Neuroimaging prediction of?hemorrhagic transformation for acute ischemic stroke. Cerebrovasc?Dis 2022;51:542-52. 

  96. Xu J, Dai F, Wang B, Wang Y, Li J, Pan L, et al. Predictive value?of CT perfusion in hemorrhagic transformation after acute ischemic stroke: a systematic review and meta-analysis. Brain Sci?2023;13:156. 

  97. Yu Y, Guo D, Lou M, Liebeskind D, Scalzo F. Prediction of hemorrhagic transformation severity in acute stroke from source perfusion MRI. IEEE Trans Biomed Eng 2018;65:2058-65. 

  98. Meng Y, Wang H, Wu C, Liu X, Qu L, Shi Y. Prediction model of?hemorrhage transformation in patient with acute ischemic stroke?based on multiparametric MRI radiomics and machine learning.?Brain Sci 2022;12:858. 

  99. Jiang L, Zhou L, Yong W, Cui J, Geng W, Chen H, et al. A deep?learning-based model for prediction of hemorrhagic transformation?after stroke. Brain Pathol 2023;33:e13023.? 

  100. Dragos HM, Stan A, Pintican R, Feier D, Lebovici A, Panaitescu Ps, et al. MRI radiomics and predictive models in assessing ischemic stroke outcome-a systematic review. Diagnostics (Basel)?2023;13:857.? 

  101. Garg R, Oh E, Naidech A, Kording K, Prabhakaran S. Automating ischemic stroke subtype classification using machine learning and natural language processing. J Stroke Cerebrovasc Dis?2019;28:2045-51.? 

  102. Guan W, Ko D, Khurshid S, Lipsanopoulos ATT, Ashburner JM,?Harrington LX, et al. Automated electronic phenotyping of cardioembolic stroke. Stroke 2021;52:181-9.? 

  103. Abedi V, Goyal N, Tsivgoulis G, Hosseinichimeh N, Hontecillas?R, Bassaganya-Riera J, et al. Novel screening tool for stroke using?artificial neural network. Stroke 2017;48:1678-81.? 

  104. Stanciu A, Banciu M, Sadighi A, Marshall KA, Holland NR, Abedi?V, et al. A predictive analytics model for differentiating between?transient ischemic attacks (TIA) and its mimics. BMC Med Inform?Decis Mak 2020;20:112.? 

  105. Abedi V, Khan A, Chaudhary D, Misra D, Avula V, Mathrawala D,?et al. Using artificial intelligence for improving stroke diagnosis in?emergency departments: a practical framework. Ther Adv Neurol?Disord 2020;13:1756286420938962.? 

  106. Kamel H, Navi BB, Parikh NS, Merkler AE, Okin PM, Devereux?RB, et al. Machine learning prediction of stroke mechanism in embolic strokes of undetermined source. Stroke 2020;51:e203-10.? 

  107. Martin MC, Sichtermann T, Schurmann K, Habib P, Wiesmann M,?Schulz JB, et al. Classification of patients with embolic stroke of?undetermined source into cardioembolic and non-cardioembolic?profile subgroups. Eur J Neurol 2022;29:2275-82.? 

  108. Ntaios G, Faouzi M, Ferrari J, Lang W, Vemmos K, Michel P. An?integer-based score to predict functional outcome in acute ischemic?stroke: the ASTRAL score. Neurology 2012;78:1916-22.? 

  109. Saposnik G, Kapral MK, Liu Y, Hall R, O'Donnell M, Raptis S, et?al. IScore: a risk score to predict death early after hospitalization?for an acute ischemic stroke. Circulation 2011;123:739-49. 

  110. Kim SH, Jeon ET, Yu S, Oh K, Kim CK, Song TJ, et al. Interpretable machine learning for early neurological deterioration prediction?in atrial fibrillation-related stroke. Sci Rep 2021;11:20610. 

  111. Xu Y, Yang X, Huang H, Peng C, Ge Y, Wu H, et al. Extreme gradient boosting model has a better performance in predicting the risk?of 90-day readmissions in patients with ischaemic stroke. J Stroke?Cerebrovasc Dis 2019;28:104441. 

  112. Meinel T, Lerch C, Fischer U, Beyeler M, Mujanovic A, Kurmann?C, et al. Multivariable prediction model for futile recanalization therapies in patients with acute ischemic stroke. Neurology?2022;99:e1009-18. 

  113. Zeng W, Li W, Huang K, Lin Z, Dai H, He Z, et al. Predicting?futile recanalization, malignant cerebral edema, and cerebral herniation using intelligible ensemble machine learning following?mechanical thrombectomy for acute ischemic stroke. Front Neurol?2022;13:982783. 

  114. Sung SF, Chen CH, Pan RC, Hu YH, Jeng JS. Natural language?processing enhances prediction of functional outcome after acute?ischemic stroke. J Am Heart Assoc 2021;10:e023486. 

  115. Philbrick KA, Yoshida K, Inoue D, Akkus Z, Kline TL, Weston?AD, et al. What does deep learning see? Insights from a classifier?trained to predict contrast enhancement phase from CT images.?AJR Am J Roentgenol 2018;211:1184-93. 

  116. van der Velden BHM, Kuijf HJ, Gilhuijs KGA, Viergever MA.?Explainable artificial intelligence (XAI) in deep learning-based?medical image analysis. Med Image Anal 2022;79:102470. 

  117. Sveding JJ. Unsupervised image-to-image translation: taking inspiration from human perception [Master's thesis]. Vaxjo (SE):?Linnaeus University; 2021. 

  118. Tuladhar A, Schimert S, Rajashekar D, Kniep HC, Fiehler J, Forkert ND. Automatic segmentation of stroke lesions in non-contrast?computed tomography datasets with convolutional neural networks. IEEE Access 2020;8:94871-9. 

  119. Brugnara G, Neuberger U, Mahmutoglu MA, Foltyn M, Herweh?C, Nagel S, et al. Multimodal predictive modeling of endovascular?treatment outcome for acute ischemic stroke using machine-learning. Stroke 2020;51:3541-51. 

  120. Quan G, Ban R, Ren JL, Liu Y, Wang W, Dai S, et al. FLAIR and?ADC image-based radiomics features as predictive biomarkers of?unfavorable outcome in patients with acute ischemic stroke. Front?Neurosci 2021;15:730879. 

  121. Moulton E, Valabregue R, Piotin M, Marnat G, Saleme S, Lapergue?B, et al. Interpretable deep learning for the prognosis of long-term?functional outcome post-stroke using acute diffusion weighted imaging. J Cereb Blood Flow Metab 2023;43:198-209. 

  122. Ntaios G, Sagris D, Kallipolitis A, Karagkiozi E, Korompoki E,?Manios E, et al. Machine-learning-derived model for the stratification of cardiovascular risk in patients with ischemic stroke. J Stroke?Cerebrovasc Dis 2021;30:106018. 

  123. Wang H, Sun Y, Zhu J, Zhuang Y, Song B. Diffusion-weighted?imaging-based radiomics for predicting 1-year ischemic stroke recurrence. Front Neurol 2022;13:1012896. 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로