$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

지속 가능 토양 지하수 관리: 개념, 연구동향, 미래전망
Sustainable Soil and Groundwater Management: Concepts, Current Research Trends, and Future Perspectives 원문보기

지하수토양환경 = Journal of soil and groundwater environment, v.28 no.spc, 2023년, pp.1 - 17  

이은희 (한국지질자원연구원 지하수환경연구센터) ,  백기태 (전북대학교 토목) ,  조은혜 (전남대학교 농생명화학과) ,  최용주 (서울대학교 건설환경공학부)

Abstract AI-Helper 아이콘AI-Helper

Sustainability is commonly recognized as one of the new paradigms or norms that will reign the new era after the modern age of revolutionary economic development. This global trend calls for the adoption of the sustainability concept to soil and groundwater management. In fact, there are several suc...

주제어

표/그림 (2)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 국내에서도 지속 가능한 토양 지하수 정화기술, 지속 가능한 토양 지하수 자원 관리방안 등에 대한 연구계의 관심이 꾸준히 포착되고는 있으나, 지속 가능한 지하수 자원 관리의 일부 분야를 제외하고는 이러한 연구계의 움직임이 새로운 개념의 토양 지하수 관리개념 도출, 정부부처의 정책적인 변화나 관련 연구개발 프로그램의 실시, 관련 산업의 패러다임 변화 등으로 이어지지 못하고 있다. 이 논문에서는 지속 가능 토양 지하수 관리의 개념을 구체적으로 분석하고, 지속 가능 토양 지하수 관리방안을 유형별로 소개하며, 토양 지하수 관리의 지속 가능성 향상을 위한 발전방향을 제안한다. 구체적이고 깊이 있는 논의를 위하여 지속 가능 토양 지하수 관리의 기술적, 정책적 측면에 보다 집중하여 논하고, 산업적 측면 등에 대한 논의는 제시한 관리기술 및 정책에 직접적으로 연계된 사항으로 한정한다.
  • 또한 지하수의 지속 가능성을 논의함에 있어 지하수 자원의 보존과 개발의 프레임워크 외에도, 다양한 관점에서 지하수의 역할을 고찰하고 기술개발 동향을 살펴보는 것이 필요할 것이다. 이 절에서는 지속 가능 지하수 관리 기술개발 동향을 최근 국내외적으로 주목받는 주요 이슈들을 중심으로 살펴보고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (82)

  1. Arshad, J., Aziz, M., Al-Huqail, A.A., Zaman, M.H.U., Husnain, M., Rehman, A.U., and Shafiq, M., 2022, Implementation of a LoRaWAN based smart agriculture decision support system for optimum crop yield, Sustainability, 14(2), 827. 

  2. Boer, B., 2010, Law for sustainable soils: International and national aspects, Glasnik Srpskog geografskog drustva, 90(4), 1-8. 

  3. Cayuela, C.M.F., Perea, R.G., Poyato, E.C., and Montesinos, P., 2022, An ICT-based decision support system for precision irrigation management in outdoor orange and greenhouse tomato crops, Agr. Water Manage., 269, 107686. 

  4. Charles F. P., 2016, Predicted Impacts of Climate Change on Groundwater Resources of Washington State, Department of Ecology, State of Washington Publication No. 16-03-006, WA, USA. 

  5. Chen, Q., Li, L., Chong, C., and Wang, X., 2022, AI-enhanced soil management and smart farming, Soil Use Manage., 38(1), 7-13. 

  6. Cho, H.M. and Yoon, C.R., 2020, Strategies for increasing the Use of Hydrothermal Energy in Seoul Metropolitan City, The Seoul Institute, Seoul, Republic of Korea. 

  7. Cho, J.S., 2011, Life cycle assessment on pump and treatment remediation of contaminated groundwater, J. Korean Soc. Environ. Eng., 33(6), 405-412. 

  8. Colby, M.E., 1991, Environmental management in development: The evolution of paradigms, Ecological Economics, 3(3), 193-213. 

  9. Costanza, R. Kubiszewski, I., Pickett, K. Trebeck, K. De Vogli, R., Ragnarsdottir, R. V., Lovins, H., Fioramonti, L., Giovannini, E., McGlade, J., Mortensen, L. F., Roberts, D., Wallis, S., and Wilkinson, R., 2020, After the crisis: Two possible futures. Solutions, 11(3). 

  10. Daigger, G.T. and Crawford, G.V., 2007, Enhancing water system security and sustainability incorporating centralized and decentralized water reclamation and reuse into urban water management systems, J. Environ. Eng. Manage., 17(1), 1-10. 

  11. Dazzi, C., Cornelis, W., Costantini, E.A., Dumitru, M., Fullen, M.A., Gabriels, D., Kasparinskis, R., Kertesz, A., Papa, G.L., Peres, G., Rickson, J., Rubio, J.L., Sholten, T., Theocharopoulos, S., and Vasenevn, I., 2019, The contribution of the European Society for Soil Conservation (ESSC) to scientific knowledge, education and sustainability, Int. Soil Water Conserv. Res., 7(1), 102-107. 

  12. Dharumarajan, S., and Hegde, R., 2022, Digital mapping of soil texture classes using Random Forest classification algorithm, Soil Use Manage., 38(1), 135-149. 

  13. Ellis, D.E. and Hadley, P.W., 2009, Sustainable remediation white paper - Integrating sustainable principles, practices, and metrics into remediation projects, Remediation, 19(3), 5-114. 

  14. Elshall, A.S., Arik, A.D., El-Kadi, A.I., Pierce, S., Ye, M., Burnett, K.M., Wada, C.A., Bremer, L.L., and Chun, G., 2020, Groundwater sustainability: A review of the interactions between science and policy, Environ. Res. Lett., 15, 093004. 

  15. EU (European Union), 2020, Circular Economy Action Plan, EU, Brussels, Belgium. 

  16. Evans, D.L., Janes-Bassett, V., Borrelli, P., Chenu, C., Ferreira, C.S., Griffiths, R.I., Kalantari, Z., Keesstra, S., Lal, R., Panagos, P., Robinson, D.A., Seifollahi-Aghmiuni, S., Smith, P., Steenhuis, T.S., Thomas, A., and Visser, S.M., 2022, Sustainable futures over the next decade are rooted in soil science, Eur. J. Soil Sci., 73(1), e13145. 

  17. Gatson, L., Lapworth, D.J., Stuart, M., and Arnscheidt, J., 2019, Prioritization approaches for substances of emerging concern in groundwater: A critical review, Environ. Sci. Technol., 53(11), 6107-6122. 

  18. Gebremeskel, K., Teka, K., Birhane, E., and Negash, E., 2019, The role of integrated watershed management on soil-health in northern Ethiopia, Acta Agric. Scand. B Soil Plant Sci., 69(8), 667-673. 

  19. Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., van de Zee, S.E.A.T.M., and Ritsema, C.J., 2015, Emerging pollutants in the environment: A challenge for water resource management, Int. Soil Water Conserv. Res., 3(1), 57-65. 

  20. Giddings, B., Hopwood, B., and O'Brien, G., 2002, Environment, economy and society: Fitting them together into sustainable development, Sustain. Dev., 10(4), 187-196. 

  21. GIMS, 2022, Groundwater in Korea- Statistics, https://www.gims.go.kr, Accessed Sep 8, 2022. 

  22. Gleeson, T., Cuthbert, M., Ferguson, G., and Perrone, D., 2020, Global groundwater sustainability, resources, and systems in the Anthropocene, Annu. Rev. Earth Planet. Sci., 48, 431-463. 

  23. Goh, C.S., Chong, H.-Y., Jack, L., and Faris, A.F.M., 2020, Revisiting triple bottom line within the context of sustainable construction: A systematic review, J. Clean. Prod., 252, 119884. 

  24. Goodland, R., 1995, The concept of environmental sustainability, Annu. Rev. Ecol. Syst., 26, 1-24. 

  25. The Government of the Republic of Korea, 2020, Korea 2050 Carbon Neutral Strategy, The Government of the Republic of Korea, Sejong, Republic of Korea. 

  26. Hannam, I. and Boer, B., 2004, Drafting Legislation for Sustainable Soils: A Guide (No. 52), IUCN. 

  27. Hyun, Y. and Han, H.J., 2021, Groundwater management paradigm shift and policy directions for integrated water management in Korea, J. Soil Groundwater Environ., 26(6), 176-185. 

  28. Hyun, Y., Cha, E.J., Lee, G.S., and Jeong, A., 2021, Agricultural Groundwater Management Strategies in Response to Agricultural Pattern Changes in the Era of Climate Crisis, Korea Environment Institute, Sejong, Republic of Korea. 

  29. Jeong, S.-W. and Suh, S., 2011, Assessment of environmental impacts and CO 2 emission from soil remediation technologies using life cycle assessment - Case studies on SVE and biopile systems. J. Korean Soc. Environ. Eng., 33(4), 267-274. 

  30. Jie, C., Jing-Zhang, C., Man-Zhi, T., and Zi-tong, G., 2002, Soil degradation: A global problem endangering sustainable development, J. Geogr. Sci., 12(2), 243-252. 

  31. Khalil, U. and Aslam, B., 2022, Geospatial-based soil management analysis using novel technique for better soil conservation, Model. Earth Syst. Environ., 8(1), 259-275. 

  32. Kim, D.-H., Choi, J.-H., Kim, L.-Y., Nam, C.-M., and Baek, K., 2012, Economic analysis on desalination technology for saline agricultural land on the basis of crop production, J. Soil Groundwater Environ., 17(5), 40-48. 

  33. Kim, D.-H., Hwang, B.-R., Moon, D.-H., Kim, Y.-S., and Baek, K., 2013, Environmental assessment on a soil washing process of a Pb-contaminated shooting range site: a case study, Environ. Sci. Pollut. Res., 20, 8417-8424. 

  34. Kim, D.-H., Hwang, B.-R., Her, N., Jeong, S., and Baek, K., 2014a, Environmental impact of soil washing process based on the CO 2 emissions and energy consumption, Korean Chem. Eng. Res., 52(1), 119-125. 

  35. Kim, D.-H., Yoo, J.-C., Hwang, B.-R., Yang, J.-S., and Baek, K., 2014b, Environmental assessment on electrokinetic remediation of multimetal-contaminated site: a case study, Environ. Sci. Pollut. Res., 21, 6751-6758. 

  36. Kim, Y.-S., Lim, H.-S., and Park, J.-W., 2015, Comparison of land farming and chemical oxidation based on environmental footprint analysis, J. Soil Groundwater Environ., 20(3), 7-14. 

  37. KIGAM, 2021, Development of Climate Change Adaptation Technologies for Securing and Utilizing Large-Scale Groundwater Resources, Ministry of Science and ICT and KIGAM, Sejong and Daejeon, Republic of Korea. 

  38. Kim, J.S., Jun, Y.S., Jun, J.H., and Cho, J.Y., 2021, Transition from linear economy to circular economy, Resour. Recycl., 30(3), 3-17. 

  39. Koh, E.H., Lee, S.H., Kaown, D., Moon, H.S., Lee, E., Lee, K.- K., and Kang, B.-R., 2017, Impacts of land use change and groundwater management on long-term nitrate-nitrogen and chloride trends in groundwater of Jeju Island, Korea, Environ. Earth Sci., 76, 176. 

  40. KOSIS, 2022, Korean statistical information service: Renewable energy production, https://kosis.kr/statHtml/statHtml.do?orgId337&tblIdDT_337N_A001, Accessed Sep 25, 2022. 

  41. Kumar, V., Singh, A.K., Jat, S.L., Parihar, C.M., Pooniya, V., Sharma, S., and Singh, B., 2014, Influence of site-specific nutrient management on growth and yield of maize (Zea mays) under conservation tillage, Indian J. Agron., 59(4), 657-660. 

  42. Lal, R., 2015, Restoring soil quality to mitigate soil degradation, Sustainability, 7(5), 5875-5895. 

  43. Langridge, R. and Fencl, A., 2020, Implications of climate change to groundwater, Encyclopedia of the World's Biomes, 2020, 438-453. 

  44. Lee, C.H., 1915, The determination of safe yield of underground reservoirs of the closed-basin type, Trans. Am. Soc. Civil Eng., 78(1), 148-218. 

  45. Lee, S.M. and Yoon, H.M., 2019, Usage status of groundwater seepage from underground space and utilization strategy for Seoul Metropolitan City, The Seoul Institute, Seoul, Republic of Korea. 

  46. Limpert, K.E., Carnell, P.E., Trevathan-Tackett, S.M., and Macreadie, P.I., 2020, Reducing Emissions From Degraded Floodplain Wetlands, Front. Environ. Sci., 8, 8. 

  47. Lobmann, M.T., Maring, L., Prokop, G., Brils, J., Bender, J., Bispo, A., and Helming, K., 2022, Systems knowledge for sustainable soil and land management, Sci. Total Environ., 822, 153389. 

  48. Maes, J. and Jacobs, S., 2017, Nature-based solutions for Europe's sustainable development, Conserv. Lett., 10(1), 121-124. 

  49. Mekonnen, M., Abeje, T., and Addisu, S., 2021, Integrated watershed management on soil quality, crop productivity and climate change adaptation, dry highland of Northeast Ethiopia, Agric. Syst., 186, 102964. 

  50. Ministry of Environment, 2022, 2021 Water supply statistics, https://www.water.or.kr/, Accessed Aug 15, 2022. 

  51. Mohammed, S., Alsafadi, K., Ali, H., Mousavi, S.M.N., Kiwan, S., Hennawi, S., Harsanyie, E., Pham, Q.B., Linh, N.T.T., Ali, R., and Anh, D.T., and Thai, V.N., 2022, Assessment of land suitability potentials for winter wheat cultivation by using a multi criteria decision Support-Geographic information system (MCDS-GIS) approach in Al-Yarmouk Basin (S syria), Geocarto Int., 37(6), 1645-1663. 

  52. Moldan, B., Janouskova, S., and Hak, T., 2012, How to understand and measure environmental sustainability: Indicators and targets, Ecol. Indic., 17, 4-13. 

  53. Montanarella, L. and Vargas, R., 2012, Global governance of soil resources as a necessary condition for sustainable development, Curr. Opin. Environ. Sustain., 4(5), 559-564. 

  54. Moon, J.Y., Park, Y.S., Na, S.K., Lee, S.H., and Kim, E.M., 2021, Global trend on circular economy and Korea's challenges, The Korea Institute for International Economic Policy, Sejong, Republic of Korea. 

  55. Morelli, J., 2011, Environmental sustainability: A definition environmental professionals, J. Environ. Sustain., 1(1), 1-9. 

  56. Moshood, T.D., Nawanir, G., and Mahmud, F., 2022, Sustainability of biodegradable plastics: A review on social, economic, and environmental factors, Crit. Rev. Biotechnol., 42(6), 892-912. 

  57. Nghiem, L.D., Koch, K., Bolzonella, D., and Drewes, J.E., 2017, Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities, Renew. Sustain. Energy Rev., 72, 354-362. 

  58. Nickson, R., McArthur, J., Burgess, W., Ahmed, K.M., Ravenscroft, P., and Rahmann, M., 1998, Arsenic poisoning of Bangladesh groundwater, Nature, 395, 338. 

  59. OECD (Organisation for Economic Co-operation and Development), 2001, OECD Environmental Strategy for the First Decade of the 21st Century, OECD, Paris, France. 

  60. Powlson, D.S., Whitmore, A.P., abd Goulding, K.W., 2011, Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false, Eur. J. Soil Sci., 62(1), 42-55. 

  61. Purvis, B., Mao, Y., and Robinson, D., 2019, Three pillars of sustainability: In search of conceptual origins, Sustain. Sci., 14, 681-695. 

  62. Ramachandrappa, B.K., Sathish, A., Dhanapal, G.N., Shankar, M.A., and Babu, P.N., 2015, Moisture conservation and site specific nutrient management for enhancing productivity in rainfed finger millet+ pigeonpea intercropping system in Alfisols of south India, Indian J. Soil Conserv., 43(1), 72-78. 

  63. Rathi, B.S., Kumar, P.S., and Show, P., 2021, A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research, J. Hazard. Mater., 409, 124413. 

  64. Romano, O. and Cecchi, L., 2020, Water and the circular economy in cities: Observations and ways forward, Shin, E., Choi, S.H., Makarigakis, A.K., Sohn, O., Clench, C., and Trudeau, Water Reuse within a Circular Economy, UNESCO & UNESCO i-WSSM, Paris, France & Daejeon, Republic of Korea. 

  65. Rosenfeld, P.E., and Feng, L.G.H., 2011, Risks of hazardous wastes, Elsevier, Amsterdam, the Netherlands. 

  66. Seth, M., Manuja, S., and Singh, S., 2020, Effect of tillage and site specific nutrient management on yield, nutrient uptake and status of soil in wheat in rice-wheat cropping system, J. Crop Weed, 16(3), 32-37. 

  67. Simon, J.A., 2017, Editor's perspective - Identifying products for green and sustainable remediation projects, Remediation, 27(2), 3-8. 

  68. Slenders, H.L.A., Bakker, L., Bardos, P., Verburg, R., Alphenaar, A., Darmendrail, D., Nadebaum, P., 2017, There are more than three reasons to consider sustainable remediation, a Dutch perspective, Remediation, 27(2), 77-97. 

  69. Stefanidis, K., 2021, Current trends, gaps, and future prospects in e-flow science: Allocating environmental water needs under a changing world, In: Environmental water requirements in mountainous areas (Eds by Dimitriou E and Papadaki C), 201-234, Elsevier, Amsterdam, the Netherlands. 

  70. Song S.H., 2015, Effect of drought on the decrease in agricultural groundwater. Mag. Korean Soc. Agric. Eng., 57(4), 25-30. 

  71. Thampapillai, D.J. and Anderson, J.R., 1994, A review of the socio-economic analysis of soil degradation problems for developed and developing countries, Rev. Market. Agric. Econ., 62(3), 291-315. 

  72. Toth, G., Hermann, T., da Silva, M.R., and Montanarella, L., 2018, Monitoring soil for sustainable development and land degradation neutrality, Environ. Monit. Assess., 190(27). 

  73. UN (United Nations), 2022a, The Sustainable Development Agenda, available at https://www.un.org/sustainabledevelopment/development-agenda, accessed Sep 20, 2022. 

  74. UN (United Nations), 2022b, Universal declaration of human rights, https://www.un.org/en/about-us/universal-declaration-ofhuman-rights, Accessed Aug 14, 2022. 

  75. UN (United Nations), 2022c, Measuring progress towards the sustainable development goals, https://sdg-tracker.org/waterand-sanitation, Accessed Aug 14, 2022. 

  76. UNFCCC (United Nations Framework Convention on Climate Change) 2015, The Paris Agreement, UN, New York, USA. 

  77. United Nations Industrial Development Organization (UNIDO), 2019, Circular economy and the Montreal protocol division, UNIDO, Vienna, Austria. 

  78. USEPA (U.S. Environmental Protection Agency), 2017, Potable reuse compendium, EPA/810/R-17/002, Washington, D.C., USA. 

  79. Wielemaker, R.C., Weijma, J., and Zeeman, G., 2018, Harvest to Harvest: Recovering Nutrients with New Sanitation Systems for Reuse in Urban Agriculture, Resour. Conserv. Recycl., 128, 426-437. 

  80. Zheng, Z.-J., Lin, M.-Y., Chiueh, P.-T., and Lo, S.-L., 2019, Framework for determining optimal strategy for sustainable remediation of contaminated sediment: A case study in Northern Taiwan, Sci. Total Environ., 654, 822-831. 

  81. Zimmerman, J.B., Anastas, P.T., Erythropel, H.C., and Leitner, W., 2020, Designing for a green chemistry future, Science, 367(6476), 397-400. 

  82. Zizala, D., Minarik, R., Skala, J., Beitlerova, H., Juricova, A., Rojas, J.R., Penizek, V., and Zadorova, T., 2022, High-resolution agriculture soil property maps from digital soil mapping methods, Czech Republic, Catena, 212, 106024. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로