$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production 원문보기

Journal of animal science and technology : JAST, v.65 no.1, 2023년, pp.16 - 31  

Syed Sayeed Ahmad (Department of Medical Biotechnology, Yeungnam University) ,  Hee Jin Chun (Department of Medical Biotechnology, Yeungnam University) ,  Khurshid Ahmad (Department of Medical Biotechnology, Yeungnam University) ,  Sibhghatulla Shaikh (Department of Medical Biotechnology, Yeungnam University) ,  Jeong Ho Lim (Department of Medical Biotechnology, Yeungnam University) ,  Shahid Ali (Department of Medical Biotechnology, Yeungnam University) ,  Sung Soo Han (Research Institute of Cell Culture, Yeungnam University) ,  Sun Jin Hur (Department of Animal Science and Technology, Chung-Ang University) ,  Jung Hoon Sohn (Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ,  Eun Ju Lee (Department of Medical Biotechnology, Yeungnam University) ,  Inho Choi (Department of Medical Biotechnology, Yeungnam University)

Abstract AI-Helper 아이콘AI-Helper

Cultured meat is a potential sustainable food generated by the in vitro myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety ...

주제어

표/그림 (2)

AI 본문요약
AI-Helper 아이콘 AI-Helper

후속연구

  • Technical difficulties related to culture media, such as GF, hormones, identification of animals (age and health), sampling of MSCs, consumer acceptance, and religious standpoints, pose considerable challenges to the establishment of viable large-scale in vitro meat production systems, and thus, more research is required before this meat culturing system can be implemented at industrial levels.
본문요약 정보가 도움이 되었나요?

참고문헌 (130)

  1. 1. Chriki S Hocquette JF The myth of cultured meat: a review Front Nutr. 2020 7 7 10.3389/fnut.2020.00007 32118026 

  2. 2. Handral HK Tay SH Chan WW Choudhury D 3D Printing of cultured meat products Crit Rev Food Sci Nutr. 2022 62 272 81 10.1080/10408398.2020.1815172 32951433 

  3. 3. Singh S Yap WS Ge XY Min VLX Choudhury D Cultured meat production fuelled by fermentation Trends Food Sci Technol. 2022 120 48 58 10.1016/j.tifs.2021.12.028 

  4. 4. Machida S Spangenburg EE Booth FW Primary rat muscle progenitor cells have decreased proliferation and myotube formation during passages Cell Prolif. 2004 37 267 77 10.1111/j.1365-2184.2004.00311.x 15245563 

  5. 5. Ahmad K Lim JH Lee EJ Chun HJ Ali S Ahmad SS Extracellular matrix and the production of cultured meat Foods. 2021 10 3116 10.3390/foods10123116 34945667 

  6. 6. Piochi M Micheloni M Torri L Effect of informative claims on the attitude of Italian consumers towards cultured meat and relationship among variables used in an explicit approach Food Res Int. 2022 151 110881 10.1016/j.foodres.2021.110881 34980410 

  7. 7. Lee EJ Jan AT Baig MH Ahmad K Malik A Rabbani G Fibromodulin and regulation of the intricate balance between myoblast differentiation to myocytes or adipocyte-like cells FASEB J. 2018 32 768 81 10.1096/fj.201700665R 28974563 

  8. 8. Choi KH Yoon JW Kim M Lee HJ Jeong J Ryu M Muscle stem cell isolation and in vitro culture for meat production: a methodological review Compr Rev Food Sci Food Saf. 2021 20 429 57 10.1111/1541-4337.12661 33443788 

  9. 9. Johnson SE NC1184: molecular mechanisms regulating skeletal muscle growth and differentiation J Anim Sci. 2022 100 skac229 10.1093/jas/skac229 35908784 

  10. 10. Jan AT Lee EJ Ahmad S Choi I Meeting the meat: delineating the molecular machinery of muscle development J Anim Sci Technol. 2016 58 18 10.1186/s40781-016-0100-x 27168943 

  11. 11. Gastaldello A Giampieri F De Giuseppe R Grosso G Baroni L Battino M The rise of processed meat alternatives: a narrative review of the manufacturing, composition, nutritional profile and health effects of newer sources of protein, and their place in healthier diets Trends Food Sci Technol. 2022 127 263 71 10.1016/j.tifs.2022.07.005 

  12. 12. Shaikh S Lee E Ahmad K Ahmad SS Chun H Lim J Cell types used for cultured meat production and the importance of myokines Foods. 2021 10 2318 10.3390/foods10102318 34681367 

  13. 13. Verbruggen S Luining D van Essen A Post MJ Bovine myoblast cell production in a microcarriers-based system Cytotechnology. 2018 70 503 12 10.1007/s10616-017-0101-8 28470539 

  14. 14. Manassi CF de Souza SS Hassemer GS Sartor S Lima CMG Miotto M Functional meat products: trends in pro-, pre-, syn-, para- and post-biotic use Food Res Int. 2022 154 111035 10.1016/j.foodres.2022.111035 35337550 

  15. 15. Zuk PA Benhaim P Hedrick MH Stem cells from adipose tissue Lanza R Gearhart J Hogan B Melton D Pedersen R Thomson J West M Handbook of stem cells. Amsterdam Academic Press 2004 p 425 47 10.1016/B978-012436643-5/50130-9 

  16. 16. Ahmad SS Ahmad K Lee EJ Lee YH Choi I Implications of insulin-like growth factor-1 in skeletal muscle and various diseases Cells. 2020 9 1773 10.3390/cells9081773 32722232 

  17. 17. Ding S Wang F Liu Y Li S Zhou G Hu P Characterization and isolation of highly purified porcine satellite cells Cell Death Discov. 2017 3 17003 10.1038/cddiscovery.2017.3 28417015 

  18. 18. Ding S Swennen GNM Messmer T Gagliardi M Molin DGM Li C Maintaining bovine satellite cells stemness through p38 pathway Sci Rep. 2018 8 10808 10.1038/s41598-018-28746-7 30018348 

  19. 19. Bogliotti YS Wu J Vilarino M Okamura D Soto DA Zhong C Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts Proc Natl Acad Sci USA. 2018 115 2090 5 10.1073/pnas.1716161115 29440377 

  20. 20. Choi KH Lee DK Kim SW Woo SH Kim DY Lee CK Chemically defined media can maintain pig pluripotency network in vitro Stem Cell Reports. 2019 13 221 34 10.1016/j.stemcr.2019.05.028 31257130 

  21. 21. Lee EJ Jan AT Baig MH Ashraf JM Nahm SS Kim YW Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program FASEB J. 2016 30 2708 19 10.1096/fj.201500133R 27069062 

  22. 22. Ahmad S Jan AT Baig MH Lee EJ Choi I Matrix gla protein: an extracellular matrix protein regulates myostatin expression in the muscle developmental program Life Sci. 2017 172 55 63 10.1016/j.lfs.2016.12.011 28012893 

  23. 23. Kim T Ahmad K Shaikh S Jan AT Seo MG Lee EJ Dermatopontin in skeletal muscle extracellular matrix regulates myogenesis Cells. 2019 8 332 10.3390/cells8040332 30970625 

  24. 24. Ahmad K Lee EJ Shaikh S Kumar A Rao KM Park SY Targeting integrins for cancer management using nanotherapeutic approaches: recent advances and challenges Semin Cancer Biol. 2021 69 325 36 10.1016/j.semcancer.2019.08.030 31454671 

  25. 25. Bomkamp C Skaalure SC Fernando GF Ben-Arye T Swartz EW Specht EA Scaffolding biomaterials for 3D cultivated meat: prospects and challenges Adv Sci. 2022 9 2102908 10.1002/advs.202102908 34786874 

  26. 26. Zhang J Chen Q Kaplan DL Wang Q High-moisture extruded protein fiber formation toward plant-based meat substitutes applications: science, technology, and prospect Trends Food Sci Technol. 2022 128 202 16 10.1016/j.tifs.2022.08.008 

  27. 27. Levi S Yen FC Baruch L Machluf M Scaffolding technologies for the engineering of cultured meat: towards a safe, sustainable, and scalable production Trends Food Sci Technol. 2022 126 13 25 10.1016/j.tifs.2022.05.011 

  28. 28. Listrat A Lebret B Louveau I Astruc T Bonnet M Lefaucheur L How muscle structure and composition influence meat and flesh quality Sci World J. 2016 2016 3182746 10.1155/2016/3182746 27022618 

  29. 29. Fish KD Rubio NR Stout AJ Yuen JSK Kaplan DL Prospects and challenges for cell-cultured fat as a novel food ingredient Trends Food Sci Technol. 2020 98 53 67 10.1016/j.tifs.2020.02.005 32123465 

  30. 30. Melzener L Verzijden KE Buijs AJ Post MJ Flack JE Cultured beef: from small biopsy to substantial quantity J Sci Food Agric. 2021 101 7 14 10.1002/jsfa.10663 32662148 

  31. 31. Reiss J Robertson S Suzuki M Cell sources for cultivated meat: applications and considerations throughout the production workflow Int J Mol Sci. 2021 22 7513 10.3390/ijms22147513 34299132 

  32. 32. Brack AS Rando TA Tissue-specific stem cells: lessons from the skeletal muscle satellite cell Cell Stem Cell. 2012 10 504 14 10.1016/j.stem.2012.04.001 22560074 

  33. 33. Yin H Price F Rudnicki MA Satellite cells and the muscle stem cell niche Physiol Rev. 2013 93 23 67 10.1152/physrev.00043.2011 23303905 

  34. 34. Wilschut KJ Jaksani S Van Den Dolder J Haagsman HP Roelen BAJ Isolation and characterization of porcine adult muscle-derived progenitor cells J Cell Biochem. 2008 105 1228 39 10.1002/jcb.21921 18821573 

  35. 35. White TP Satellite cell and growth factor involvement in skeletal muscle growth Med Sci Sports Exerc. 1989 21 S30 10.1249/00005768-198904001-00180 

  36. 36. Lee EJ Pokharel S Jan AT Huh S Galope R Lim JH Transthyretin: a transporter protein essential for proliferation of myoblast in the myogenic program Int J Mol Sci. 2017 18 115 10.3390/ijms18010115 28075349 

  37. 37. Vlasova-St. Louis I Bohjanen PR Post-transcriptional regulation of cytokine and growth factor signaling in cancer Cytokine Growth Factor Rev. 2017 33 83 93 10.1016/j.cytogfr.2016.11.004 27956133 

  38. 38. Chen FM Zhang M Wu ZF Toward delivery of multiple growth factors in tissue engineering Biomaterials. 2010 31 6279 308 10.1016/j.biomaterials.2010.04.053 20493521 

  39. 39. Kraemer WJ Ratamess NA Hymer WC Nindl BC Fragala MS Growth hormone(s), testosterone, insulin-like growth factors, and cortisol: roles and integration for cellular development and growth with exercise Front Endocrinol. 2020 11 33 10.3389/fendo.2020.00033 32158429 

  40. 40. Yu M Wang H Xu Y Yu D Li D Liu X Insulin-like growth factor-1 (IGF-1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway Cell Biol Int. 2015 39 910 22 10.1002/cbin.10466 25808997 

  41. 41. Halmos T Suba I The physiological role of growth hormone and insulin-like growth factors Orv Hetil. 2019 160 1774 83 10.1556/650.2019.31507 31680542 

  42. 42. Schmid C Steiner T Froesch ER Preferential enhancement of myoblast differentiation by insulin-like growth factors (IGF I and IGF II) in primary cultures of chicken embryonic cells FEBS Lett. 1983 161 117 21 10.1016/0014-5793(83)80742-X 6350044 

  43. 43. Ewton DZ Florini JR Effects of the somatomedins and insulin on myoblast differentiation in vitro Dev Biol. 1981 86 31 9 10.1016/0012-1606(81)90312-2 6169566 

  44. 44. Huang YC Dennis RG Larkin L Baar K Rapid formation of functional muscle in vitro using fibrin gels J Appl Physiol. 2005 98 706 13 10.1152/japplphysiol.00273.2004 15475606 

  45. 45. Oksbjerg N Gondret F Vestergaard M Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system Domest Anim Endocrinol. 2004 27 219 40 10.1016/j.domaniend.2004.06.007 15451071 

  46. 46. Massagué J Cheifetz S Endo T Nadal-Ginard B Type beta transforming growth factor is an inhibitor of myogenic differentiation Proc Natl Acad Sci USA. 1986 83 8206 10 10.1073/pnas.83.21.8206 3022285 

  47. 47. Weist MR Wellington MS Bermudez JE Kostrominova TY Mendias CL Arruda EM TGF-β1 enhances contractility in engineered skeletal muscle J Tissue Eng Regen Med. 2013 7 562 71 10.1002/term.551 22371337 

  48. 48. Amit M Shariki C Margulets V Itskovitz-Eldor J Feeder layer- and serum-free culture of human embryonic stem cells Biol Reprod. 2004 70 837 45 10.1095/biolreprod.103.021147 14627547 

  49. 49. Rando TA Blau HM Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy J Cell Biol. 1994 125 1275 87 10.1083/jcb.125.6.1275 8207057 

  50. 50. Xu C Rosler E Jiang J Lebkowski JS Gold JD O’Sullivan C Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium Stem Cells. 2005 23 315 23 10.1634/stemcells.2004-0211 15749926 

  51. 51. Düsterhöft S Pette D Evidence that acidic fibroblast growth factor promotes maturation of rat satellite-cell-derived myotubes in vitro Differentiation. 1999 65 161 9 10.1046/j.1432-0436.1999.6530161.x 10631813 

  52. 52. Schiaffino S Mammucari C Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models Skelet Muscle. 2011 1 4 10.1186/2044-5040-1-4 21798082 

  53. 53. Huang Z Xu A Cheung BMY The potential role of fibroblast growth factor 21 in lipid metabolism and hypertension Curr Hypertens Rep. 2017 19 28 10.1007/s11906-017-0730-5 28337713 

  54. 54. Liu X Wang Y Zhao S Li X Fibroblast growth factor 21 promotes C2C12 cells myogenic differentiation by enhancing cell cycle exit BioMed Res Int. 2017 2017 1648715 10.1155/2017/1648715 29109955 

  55. 55. Godoy-Parejo C Deng C Liu W Chen G Insulin stimulates PI3K/AKT and cell adhesion to promote the survival of individualized human embryonic stem cells Stem Cells. 2019 37 1030 41 10.1002/stem.3026 31021484 

  56. 56. Tipton KD Wolfe RR Exercise, protein metabolism, and muscle growth Int J Sport Nutr Exerc Metab. 2001 11 109 32 10.1123/ijsnem.11.1.109 11255140 

  57. 57. Kumegawa M Ikeda E Hosoda S Takuma T In vitro effects of thyroxine and insulin on myoblasts from chick embryo skeletal muscle Dev Biol. 1980 79 493 9 10.1016/0012-1606(80)90134-7 7000583 

  58. 58. Florini JR Ewton DZ Insulin acts as a somatomedin analog in stimulating myoblast growth in serum-free medium In Vitro. 1981 17 763 8 10.1007/BF02618442 6170569 

  59. 59. Miller KJ Thaloor D Matteson S Pavlath GK Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle Am J Physiol Cell Physiol. 2000 278 C174 81 10.1152/ajpcell.2000.278.1.C174 10644525 

  60. 60. Allen RE Sheehan SM Taylor RG Kendall TL Rice GM Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro J Cell Physiol. 1995 165 307 12 10.1002/jcp.1041650211 7593208 

  61. 61. Sinha-Hikim I Roth SM Lee MI Bhasin S Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men Am J Physiol Endocrinol Metab. 2003 285 E197 205 10.1152/ajpendo.00370.2002 12670837 

  62. 62. Herbst KL Bhasin S Testosterone action on skeletal muscle Curr Opin Clin Nutr Metab Care. 2004 7 271 7 10.1097/00075197-200405000-00006 15075918 

  63. 63. Kimura I Hasegawa T Ozawa E Indispensability of iron-bound chick transferrin for chick myogenesis in vitro: (myogenesis/transfrrin/iron) Dev Growth Differ. 1982 24 369 80 10.1111/j.1440-169X.1982.00369.x 

  64. 64. Mescher AL Munaim SI Transferrin and the growth-promoting effect of nerves Int Rev Cytol. 1988 110 1 26 10.1016/S0074-7696(08)61846-X 3053497 

  65. 65. Matsuda R Spector D Micou-Eastwood J Strohman RC There is selective accumulation of a growth factor in chicken skeletal muscle. II. Transferrin accumulation in dystrophic fast muscle Dev Biol. 1984 103 276 84 10.1016/0012-1606(84)90315-4 6373445 

  66. 66. Simsa R Yuen J Stout A Rubio N Fogelstrand P Kaplan DL Extracellular heme proteins influence bovine myosatellite cell proliferation and the color of cell-based meat Foods. 2019 8 521 10.3390/foods8100521 31640291 

  67. 67. Suman SP Joseph P Myoglobin chemistry and meat color Annu Rev Food Sci Technol. 2013 4 79 99 10.1146/annurev-food-030212-182623 23190143 

  68. 68. Syverud BC VanDusen KW Larkin LM Growth factors for skeletal muscle tissue engineering Cells Tissues Organs. 2016 202 169 79 10.1159/000444671 27825154 

  69. 69. Zhang P Liang X Shan T Jiang Q Deng C Zheng R mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration Biochem Biophys Res Commun. 2015 463 102 8 10.1016/j.bbrc.2015.05.032 25998386 

  70. 70. Rion N Castets P Lin S Enderle L Reinhard JR Eickhorst C mTOR controls embryonic and adult myogenesis via mTORC1 Development. 2019 146 dev172460 10.1242/dev.172460 30872276 

  71. 71. Gualano B Roschel H Lancha AH Jr Brightbill CE Rawson ES In sickness and in health: the widespread application of creatine supplementation Amino Acids. 2012 43 519 29 10.1007/s00726-011-1132-7 22101980 

  72. 72. Kim J Lee J Kim S Yoon D Kim J Sung DJ Role of creatine supplementation in exercise-induced muscle damage: a mini review J Exerc Rehabil. 2015 11 244 50 10.12965/jer.150237 26535213 

  73. 73. Yablonka-Reuveni Z Balestreri TM Bowen-Pope DF Regulation of proliferation and differentiation of myoblasts derived from adult mouse skeletal muscle by specific isoforms of PDGF J Cell Biol. 1990 111 1623 9 10.1083/jcb.111.4.1623 2211828 

  74. 74. Maley MAL Davies MJ Grounds MD Extracellular matrix, growth factors, genetics: their influence on cell proliferation and myotube formation in primary cultures of adult mouse skeletal muscle Exp Cell Res. 1995 219 169 79 10.1006/excr.1995.1217 7628533 

  75. 75. McFarland DC Influence of growth factors on poultry myogenic satellite cells Poult Sci. 1999 78 747 58 10.1093/ps/78.5.747 10228973 

  76. 76. Cheung BMY Deng HB Fibroblast growth factor 21: a promising therapeutic target in obesity-related diseases Expert Rev Cardiovasc Ther. 2014 12 659 66 10.1586/14779072.2014.904745 24697521 

  77. 77. Mossahebi-Mohammadi M Quan M Zhang JS Li X FGF signaling pathway: a key regulator of stem cell pluripotency Front Cell Dev Biol. 2020 8 79 10.3389/fcell.2020.00079 32133359 

  78. 78. Groux-Muscatelli B Bassaglia Y Barritault D Caruelle JP Gautron J Proliferating satellite cells express acidic fibroblast growth factor during in vitro myogenesis Dev Biol. 1990 142 380 5 10.1016/0012-1606(90)90358-P 1701738 

  79. 79. Shahini A Vydiam K Choudhury D Rajabian N Nguyen T Lei P Efficient and high yield isolation of myoblasts from skeletal muscle Stem Cell Res. 2018 30 122 9 10.1016/j.scr.2018.05.017 29879622 

  80. 80. Koledova Z Sumbal J Rabata A de La Bourdonnaye G Chaloupkova R Hrdlickova B Fibroblast growth factor 2 protein stability provides decreased dependence on heparin for induction of FGFR signaling and alters ERK signaling dynamics Front Cell Dev Biol. 2019 7 331 10.3389/fcell.2019.00331 31921844 

  81. 81. Breitkopf K Roeyen C Sawitza I Wickert L Floege J Gressner AM Expression patterns of PDGF-A, -B, -C and -D and the PDGF-receptors α and β in activated rat hepatic stellate cells (HSC) Cytokine. 2005 31 349 57 10.1016/j.cyto.2005.06.005 16039137 

  82. 82. Albrecht DE Tidball JG Platelet-derived growth factor-stimulated secretion of basement membrane proteins by skeletal muscle occurs by tyrosine kinase-dependent and -independent pathways J Biol Chem. 1997 272 2236 44 10.1074/jbc.272.4.2236 8999929 

  83. 83. Coleman ME DeMayo F Yin KC Lee HM Geske R Montgomery C Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice J Biol Chem. 1995 270 12109 16 10.1074/jbc.270.20.12109 7744859 

  84. 84. Lawlor MA Rotwein P Insulin-like growth factor-mediated muscle cell survival: central roles for Akt and cyclin-dependent kinase inhibitor p21 Mol Cell Biol. 2000 20 8983 95 10.1128/MCB.20.23.8983-8995.2000 11073997 

  85. 85. Valdés JA Flores S Fuentes EN Osorio-Fuentealba C Jaimovich E Molina A IGF-1 induces IP3-dependent calcium signal involved in the regulation of myostatin gene expression mediated by NFAT during myoblast differentiation J Cell Physiol. 2013 228 1452 63 10.1002/jcp.24298 23255067 

  86. 86. Zanou N Gailly P Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways Cell Mol Life Sci. 2013 70 4117 30 10.1007/s00018-013-1330-4 23552962 

  87. 87. Le Roith D Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors N Engl J Med. 1997 336 633 40 10.1056/NEJM199702273360907 9032050 

  88. 88. Noguchi S The biological function of insulin-like growth factor-I in myogenesis and its therapeutic effect on muscular dystrophy Acta Myol. 2005 24 115 8 16550928 

  89. 89. McFarland DC Pesall JE Gilkerson KK The influence of growth factors on turkey embryonic myoblasts and satellite cells in vitro Gen Comp Endocrinol. 1993 89 415 24 10.1006/gcen.1993.1049 7687577 

  90. 90. Duclos MJ Wilkie RS Goddard C Stimulation of DNA synthesis in chicken muscle satellite cells by insulin and insulin-like growth factors: evidence for exclusive mediation by a type-I insulin-like growth factor receptor J Endocrinol. 1991 128 35 42 10.1677/joe.0.1280035 1847964 

  91. 91. McPherron AC Lawler AM Lee SJ Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member Nature. 1997 387 83 90 10.1038/387083a0 9139826 

  92. 92. Lee EJ Ahmad SS Lim JH Ahmad K Shaikh S Lee YS Interaction of fibromodulin and myostatin to regulate skeletal muscle aging: an opposite regulation in muscle aging, diabetes, and intracellular lipid accumulation Cells. 2021 10 2083 10.3390/cells10082083 34440852 

  93. 93. Grobet L Martin LJR Poncelet D Pirottin D Brouwers B Riquet J A deletion in the bovine myostatin gene causes the double–muscled phenotype in cattle Nat Genet. 1997 17 71 4 10.1038/ng0997-71 9288100 

  94. 94. Lu J Sun D Xu L Lu G Zhao F Wei C Selection of an effective small interference RNA to silence myostatin gene expression in sheep fibroblast cells Biochem Genet. 2012 50 838 47 10.1007/s10528-012-9524-2 22736258 

  95. 95. Ahmad SS Ahmad K Lee EJ Shaikh S Choi I Computational identification of dithymoquinone as a potential inhibitor of myostatin and regulator of muscle mass Molecules. 2021 26 5407 10.3390/molecules26175407 34500839 

  96. 96. Ali S Ahmad K Shaikh S Lim JH Chun HJ Ahmad SS Identification and evaluation of traditional Chinese medicine natural compounds as potential myostatin inhibitors: an in silico approach Molecules. 2022 27 4303 10.3390/molecules27134303 35807547 

  97. 97. Lee EJ Shaikh S Ahmad K Ahmad SS Lim JH Park S Isolation and characterization of compounds from Glycyrrhiza uralensis as therapeutic agents for the muscle disorders Int J Mol Sci. 2021 22 876 10.3390/ijms22020876 33467209 

  98. 98. Baig MH Ahmad K Moon JS Park SY Ho Lim J Chun HJ Myostatin and its regulation: a comprehensive review of myostatin inhibiting strategies Front Physiol. 2022 13 876078 10.3389/fphys.2022.876078 35812316 

  99. 99. Lee EJ Shaikh S Baig MH Park SY Lim JH Ahmad SS MIF1 and MIF2 myostatin peptide inhibitors as potent muscle mass regulators Int J Mol Sci. 2022 23 4222 10.3390/ijms23084222 35457038 

  100. 100. Delaney K Kasprzycka P Ciemerych MA Zimowska M The role of TGF-β1 during skeletal muscle regeneration Cell Biol Int. 2017 41 706 15 10.1002/cbin.10725 28035727 

  101. 101. Rathbone CR Yamanouchi K Chen XK Nevoret-Bell CJ Rhoads RP Allen RE Effects of transforming growth factor-beta (TGF-β1) on satellite cell activation and survival during oxidative stress J Muscle Res Cell Motil. 2011 32 99 109 10.1007/s10974-011-9255-8 21823037 

  102. 102. Krieger J Park BW Lambert CR Malcuit C 3D skeletal muscle fascicle engineering is improved with TGF-β1 treatment of myogenic cells and their co-culture with myofibroblasts PeerJ. 2018 6 e4939 10.7717/peerj.4939 30018850 

  103. 103. Ben-Arye T Levenberg S Tissue engineering for clean meat production Front Sustain Food Syst. 2019 3 46 10.3389/fsufs.2019.00046 

  104. 104. Mandel JL Pearson ML Insulin stimulates myogenesis in a rat myoblast line Nature. 1974 251 618 20 10.1038/251618a0 4421831 

  105. 105. Dodson MV Allen RE Hossner KL Ovine somatomedin, multiplication-stimulating activity, and insulin promote skeletal muscle satellite cell proliferation in vitro Endocrinology. 1985 117 2357 63 10.1210/endo-117-6-2357 3905359 

  106. 106. Rhoads RP Baumgard LH El-Kadi SW Zhao LD PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: roles for insulin-supported skeletal muscle growth J Anim Sci. 2016 94 1791 802 10.2527/jas.2015-0110 27285676 

  107. 107. Kraemer WJ Ratamess NA Nindl BC Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise J Appl Physiol. 2017 122 549 58 10.1152/japplphysiol.00599.2016 27856715 

  108. 108. Vingren JL Kraemer WJ Ratamess NA Anderson JM Volek JS Maresh CM Testosterone physiology in resistance exercise and training: the up-stream regulatory elements Sports Med. 2010 40 1037 53 10.2165/11536910-000000000-00000 21058750 

  109. 109. Carson JA Manolagas SC Effects of sex steroids on bones and muscles: similarities, parallels, and putative interactions in health and disease Bone. 2015 80 67 78 10.1016/j.bone.2015.04.015 26453497 

  110. 110. Rossetti ML Steiner JL Gordon BS Androgen-mediated regulation of skeletal muscle protein balance Mol Cell Endocrinol. 2017 447 35 44 10.1016/j.mce.2017.02.031 28237723 

  111. 111. Munck A Guyre PM Holbrook NJ Physiological functions of glucocorticoids in stress and their relation to pharmacological actions Endocr Rev. 1984 5 25 44 10.1210/edrv-5-1-25 6368214 

  112. 112. Sheffield-Moore M Urban RJ An overview of the endocrinology of skeletal muscle Trends Endocrinol Metab. 2004 15 110 5 10.1016/j.tem.2004.02.009 15046739 

  113. 113. Boncompagni S Arthurton L Akujuru E Pearson T Steverding D Protasi F Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres J Physiol. 2015 593 2679 92 10.1113/JP270502 25846902 

  114. 114. Pérez MHA Cormack J Mallinson D Mutungi G A membrane glucocorticoid receptor mediates the rapid/non-genomic actions of glucocorticoids in mammalian skeletal muscle fibres J Physiol. 2013 591 5171 85 10.1113/jphysiol.2013.256586 23878367 

  115. 115. Lin JW Huang YM Chen YQ Chuang TY Lan TY Liu YW Dexamethasone accelerates muscle regeneration by modulating kinesin-1-mediated focal adhesion signals Cell Death Discov. 2021 7 35 10.1038/s41420-021-00412-4 33597503 

  116. 116. Syverud BC VanDusen KW Larkin LM Effects of dexamethasone on satellite cells and tissue engineered skeletal muscle units Tissue Eng Part A. 2016 22 480 9 10.1089/ten.tea.2015.0545 26790477 

  117. 117. Guerriero V Jr Florini JR Dexamethasone effects on myoblast proliferation and differentiation Endocrinology. 1980 106 1198 202 10.1210/endo-106-4-1198 7188899 

  118. 118. Lesmana R Sinha RA Singh BK Zhou J Ohba K Wu Y Thyroid hormone stimulation of autophagy is essential for mitochondrial biogenesis and activity in skeletal muscle Endocrinology. 2016 157 23 38 10.1210/en.2015-1632 26562261 

  119. 119. Bloise FF Cordeiro A Ortiga-Carvalho TM Role of thyroid hormone in skeletal muscle physiology J Endocrinol. 2018 236 R57 68 10.1530/JOE-16-0611 29051191 

  120. 120. Bloise FF Oliveira TS Cordeiro A Ortiga-Carvalho TM Thyroid hormones play role in Sarcopenia and Myopathies Front Physiol. 2018 9 560 10.3389/fphys.2018.00560 29910736 

  121. 121. Salvatore D Simonides WS Dentice M Zavacki AM Larsen PR Thyroid hormones and skeletal muscle—new insights and potential implications Nat Rev Endocrinol. 2014 10 206 14 10.1038/nrendo.2013.238 24322650 

  122. 122. Martín AI Priego T López-Calderón A Hormones and muscle atrophy Adv Exp Med Biol. 2018 1088 207 33 10.1007/978-981-13-1435-3_9 30390253 

  123. 123. Lee EJ Shaikh S Choi D Ahmad K Baig MH Lim JH Transthyretin maintains muscle homeostasis through the novel shuttle pathway of thyroid hormones during myoblast differentiation Cells. 2019 8 1565 10.3390/cells8121565 31817149 

  124. 124. Bhat ZF Kumar S Bhat HF In vitro meat: a future animal-free harvest Crit Rev Food Sci Nutr. 2017 57 782 9 10.1080/10408398.2014.924899 25942290 

  125. 125. Bhat ZF Bhat H Animal-free meat biofabrication Am J Food Technol. 2011 6 441 59 10.3923/ajft.2011.441.459 

  126. 126. Bhatia S Goli D Introduction to pharmaceutical biotechnology, volume 1: basic techniques and concepts. Bristol IOP 2018 10.1088/978-0-7503-1299-8 

  127. 127. Verma A Animal tissue culture: principles and applications Verma AS Singh A Animal biotechnology: models in discovery and translation. Amsterdam Academic Press 2014 p 211 31 

  128. 128. van der Valk J Bieback K Buta C Cochrane B Dirks WG Fu J Fetal bovine serum (FBS): past – present – future Altern Anim Exp. 2018 35 99 118 10.14573/altex.1705101 28800376 

  129. 129. Bauman E Granja PL Barrias CC Fetal bovine serum-free culture of endothelial progenitor cells—progress and challenges J Tissue Eng Regen Med. 2018 12 1567 78 10.1002/term.2678 29701896 

  130. 130. Venkatesan M Semper C Skrivergaar S DiLeo R Mesa N Rasmussen MK Recombinant production of growth factors for application in cell culture iScience. 2022 25 105054 10.1016/j.isci.2022.105054 36157583 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로