$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

우주탐사용 질량분석기들의 과학적 성과와 기술 동향
Scientific Achievements and Technology Trends of Mass Spectrometers for Space Exploration 원문보기

우주기술과 응용 = Journal of space technology and applications, v.3 no.1, 2023년, pp.26 - 43  

홍익선 (충남대학교 우주.지질학과) ,  이유 (충남대학교 우주.지질학과) ,  이진근 ((주)영인에이스) ,  이남석 ((주)영인에이스) ,  강성원 ((주)영인에이스) ,  김선태 ((주)영인에이스) ,  장규하 (한국원자력연구원) ,  최정림 (충북대학교 천문우주학과) ,  민경욱 (한국과학기술원) ,  정종일 (충남대학교 우주.지질학과)

초록
AI-Helper 아이콘AI-Helper

우리나라의 첫 달 탐사선 다누리호가 달 궤도에 진입을 성공하면서 이후 화성 탐사와 같은 우리나라의 새로운 우주탐사 계획을 기대할 수 있게 되었다. 우리나라의 우주탐사 탑재체는 한정적인 분야에서만 개발되어 새로운 우주탐사 탑재체를 개발할 필요성이 있다. 국외에서는 우주탐사에 거의 기본적으로 탑재되는 장비로 질량분석기가 있으며, 탐사 대상의 대기와 휘발성 물질 관측과 더불어 유기물 분석을 통한 생명체 탐사까지 아우르는 매우 유용한 탑재체이다. 하지만 우리나라에선 우주탐사용으로 질량분석기 탑재체를 개발한 전적이 없으므로 앞으로의 우주탐사를 대비해 기술을 확보해야 할 필요가 있다. 그에 앞서 국외의 우주탐사용 질량분석기 탑재체의 과학적 성과를 살펴보고 동향을 파악해본다.

Abstract AI-Helper 아이콘AI-Helper

As Korean first lunar probe, Danuri, succeeded in entering lunar orbit, Korean new space exploration plans such as Mars exploration can be expected. Korean space exploration payload is developed only in a limited field, so there is a need to create a new space exploration payload. In foreign countri...

주제어

참고문헌 (49)

  1. National Space Committee, The new government hold the first National Space Committee,?the concentration of national capabilities to expand economic territory to space (2022)?[Internet], viewed 2022 Sep 20, available from: https://www.korea.kr/common/download.do?fileId197128749&tblKeyGMN 

  2. Seon KI, Yuk IS, Ryu KS, Lee DH, Optical design of FIMS type far ultraviolet spectrograph?for space observation, Publ. Korean Astron. Soc. 19, 65-70 (2004). https://doi.org/10.5303/PKAS.2004.19.1.065 

  3. Han W, Lee DH, Jeong WS, Park Y, Moon B, et al., MIRIS: a compact wide-field infrared space?telescope, Publ. Astron. Soc. Pac. 126, 853-862 (2014). https://doi.org/10.1086/678130 

  4. Jeong WS, Park SJ, Moon B, Lee DH, Pyo J, et al., Near-infrared imaging spectrometer?onboard NEXTSat-1, Proceedings of the SPIE Astronomical Telescopes + Instrumentation,?Edinburgh, UK, 26 Jun-1 Jul 2016. 

  5. Ren Z, Guo M, Cheng Y, Wang Y, Sun W, et al., A review of the development and application?of space miniature mass spectrometers, Vacuum. 155, 108-117 (2018). https://doi.org/10.1016/j.vacuum.2018.05.048 

  6. Arevalo R Jr, Ni Z, Danell RM, Mass spectrometry and planetary exploration: a brief review?and future projection, J. Mass. Spectrom. 55, e4454 (2020). https://doi.org/10.1002/jms.4454 

  7. Hoffman JH, Lunar atmospheric composition experiment final report, NASA Technical?Report Server, NASA-CR-150946 (1975). 

  8. Killen RM, Williams DR, Park J, Tucker OJ, Kim SJ, The lunar neon exosphere seen in LACE?data, Icarus. 329, 246-250 (2019). https://doi.org/10.1016/j.icarus.2019.04.018 

  9. Biemann K, Oro J, Toulmin P 3rd, Orgel LE, Nier AO, et al., The search for organic?substances and inorganic volatile compounds in the surface of Mars, J. Geophys. Res. 82,?4641-4658 (1977). https://doi.org/10.1029/JS082i028p04641 

  10. Toulmin P 3rd, Baird AK, Clark BC, Keil K, Rose HJ Jr, et al., Geochemical and?mineralogical interpretation of the Viking inorganic chemical results, J. Geophys. Res. 82,?4625-4634 (1977). https://doi.org/10.1029/js082i028p04625 

  11. Donahue TM, Pioneer Venus results: an overview, Science 205, 41-44 (1979). https://doi.org/10.1126/science.205.4401.41 

  12. Hoffman JH, Oyama VI, von Zahn U, Measurements of the Venus lower atmosphere composition: a comparison of results, J. Geophys. Res. 85, 7871-7881 (1980). https://doi.org/10.1029/JA085iA13p07871 

  13. Istomin VG, Grechnev KV, Kochnev VA, Venera 13 and Venera 14: mass spectrometry of?the atmosphere, Kosm. Issled. 21, 410-420 (1983). 

  14. Kissel J, Sagdeev RZ, Bertaux JL, Angarov VN, Audouze J, et al., Composition of comet?Halley dust particles from Vega observations, Nature 321, 280-282 (1986). https://doi.org/10.1038/321280a0 

  15. Kissel J, Krueger FR, The organic component in dust from comet Halley as measured by?the PUMA mass spectrometer on board Vega 1, Nature 326, 755-760 (1987). https://doi.org/10.1038/326755a0 

  16. Reinhard R, The Giotto encounter with comet Halley, Nature 321, 313-318 (1986). https://doi.org/10.1038/321313a0 

  17. Niemann HB, Harpold DN, Atreya SK, Carignan GR, Hunten DM, et al., Galileo probe mass?spectrometer experiment, Space Sci. Rev. 60, 111-142 (1992). https://doi.org/10.1007/BF00216852 

  18. Mahaffy PR, Donahue TM, Atreya SK, Owen TC, Niemann HB, Galileo probe measurements?of D/H and 3He/4He in Jupiter's atmosphere, Space Sci. Rev. 84, 251-263 (1998).?https://doi.org/10.1023/A:1005091806594 

  19. Kallenbach R, Ipavich FM, Kucharek H, Bochsler P, Galvin AB, et al., Fractionation of SI,?NE, and MG isotopes in the solar wind as measured by SOHO/CELIAS/MTOF, Space Sci.?Rev. 85, 357-370 (1998). https://doi.org/10.1023/A:1005131424697 

  20. Waite JH Jr, Lewis WS, Kasprzak WT, Anicich VG, Block BP, et al., The Cassini ion and?neutral mass spectrometer (INMS) investigation, Space Sci. Rev. 114, 113-231 (2004).?https://doi.org/10.1007/s11214-004-1408-2 

  21. Snowden D, Yelle RV, Cui J, Wahlund JE, Edberg NJT, et al., The thermal structure of?Titan's upper atmosphere, I: temperature profiles from Cassini INMS observations, Icarus.?226, 552-582 (2013). https://doi.org/10.1016/j.icarus.2013.06.006 

  22. Snowden D, Yelle RV, The thermal structure of Titan's upper atmosphere, II: energetics,?Icarus. 228, 64-77 (2014). https://doi.org/10.1016/j.icarus.2013.08.027 

  23. Ihara A, Doke T, Hasebe N, Kikuchi J, Kobayashi MN, et al., Electron and ion spectrometer?onboard the Nozomi spacecraft and its initial results in interplanetary space, Astropart.?Phys. 17, 263-278 (2002). https://doi.org/10.1016/S0927-6505(01)00163-3 

  24. Kissel J, Krueger FR, Silen J, Clark BC, The cometary and interstellar dust analyzer at comet?81P/Wild 2, Science 304, 1774-1776 (2004). https://doi.org/10.1126/science.1098836 

  25. Reynolds E, Chiu M, Farquhar R, Dunham D, The CONTOUR discovery mission, in 1999?IEEE Aerospace Conference, Snowmass, CO, 7 Mar 1999. 

  26. Balsiger H, Altwegg K, Bochsler P, Eberhardt P, Fischer J, et al., Rosina - Rosetta orbiter?spectrometer for ion and neutral analysis, Space Sci. Rev. 128, 745-801 (2007).?https://doi.org/10.1007/s11214-006-8335-3 

  27. Roy LL, Altwegg K, Balsiger H, Berthelier JJ, Bieler A, et al., Inventory of the volatiles on?comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA, Astron. Astrophys. 583, A1?(2015). https://doi.org/10.1051/0004-6361/201526450 

  28. Schroeder IRHG, Altwegg K, Balsiger H, Berthelier JJ, Combi MR, et al., A comparison?between the two lobes of comet 67P/Churyumov-Gerasimenko based on D/H ratios in?H2O measured with the Rosetta/ROSINA DFMS, Mon. Not. R. Astron. Soc. 489, 4734-4740?(2019). https://doi.org/10.1093/mnras/stz2482 

  29. Schroeder IRHG, Altwegg K, Balsiger H, Berthelier JJ, Keyser JD, et al., 16O/18O ratio in?water in the coma of comet 67P/Churyumov-Gerasimenko measured with the Rosetta/ROSINA double-focusing mass spectrometer, Astron. Astrophys. 630, A29 (2019). https://doi.org/10.1051/0004-6361/201833806 

  30. Kissel J, Altwegg K, Clark BC, Colangeli L, Cottin H, et al., Cosima - high resolution time-of-flight secondary ion mass spectrometer for the analysis of cometary dust particles?onboard Rosetta, Space Sci. Rev. 128, 823-867 (2007). https://doi.org/10.1007/s11214-006-9083-0 

  31. Paquette JA, Fray N, Bardyn A, Engrand C, Alexander CMOD, et al., D/H in the refractory?organics of comet 67P/Churyumov-Gerasimenko measured by Rosetta/COSIMA, Mon.?Not. R. Astron. Soc. 504, 4940-4951 (2021). https://doi.org/10.1093/mnras/stab1028 

  32. Bardyn A, Baklouti D, Cottin H, Fray N, Briois C, et al., Carbon-rich dust in comet?67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta, Mon. Not. R. Astron. Soc.?469, S712-S722 (2017). https://doi.org/10.1093/mnras/stx2640 

  33. Morse A, Mousis O, Sheridan S, Morgan G, Andrews D, et al., Low CO/CO2 ratios of comet?67P measured at the Abydos landing site by the Ptolemy mass spectrometer, Astron.?Astrophys. 583, A42 (2015). https://doi.org/10.1051/0004-6361/201526624 

  34. Leseigneur G, Bredehoft JH, Gautier T, Giri C, Kruger H, et al., ESA's cometary mission?Rosetta-re-characterization of the COSAC mass spectrometry results, Angew. Chem. Int.?Ed. Engl. 61, e202201925 (2022). https://doi.org/10.1002/anie.202201925 

  35. Cannon KM, Sutter B, Ming DW, Boynton WV, Quinn R, Perchlorate induced low?temperature carbonate decomposition in the Mars Phoenix Thermal and Evolved Gas?Analyzer (TEGA), Geophys. Res. Lett. 39 (2012). https://doi.org/10.1029/2012GL051952 

  36. Sutter B, Boynton WV, Ming DW, Niles PB, Morris RV, et al., The detection of carbonate?in the martian soil at the Phoenix Landing site: a laboratory investigation and comparison?with the Thermal and Evolved Gas Analyzer (TEGA) data, Icarus. 218, 290-296 (2012).?https://doi.org/10.1016/j.icarus.2011.12.002 

  37. Darrach MR, Chutjian A, Bornstein BJ, Croonquist AP, Garkanian V, et al., Trace chemical?and major constituents measurements of the International Space Station atmosphere by?the vehicle cabin atmosphere monitor, in 42nd International Conference on Environmental Systems, San Diego, CA, 15-19 Jul 2012. 

  38. Mahaffy PR, Webster CR, Cabane M, Conrad PG, Coll P, et al., The sample analysis at mars?investigation and instrument suite, Space Sci. Rev. 170, 401-478 (2012). https://doi.org/10.1007/s11214-012-9879-z 

  39. Wong MH, Atreya SK, Mahaffy PN, Franz HB, Malespin C, et al., Isotopes of nitrogen on?Mars: atmospheric measurements by Curiosity's mass spectrometer, Geophys. Res. Lett.?40, 6033-6037 (2013). https://doi.org/10.1002/2013GL057840 

  40. Atreya SK, Trainer MG, Franz HB, Wong MH, Manning HLK, et al., Primordial argon?isotope fractionation in the atmosphere of Mars measured by the SAM instrument on?curiosity and implications for atmospheric loss, Geophys. Res. Lett. 40, 5605-5609 (2013).?https://doi.org/10.1002/2013GL057763 

  41. Webster CR, Mahaffy PR, Determining the local abundance of Martian methane and its'? 13 C/ 12 C and D/H isotopic ratios for comparison with related gas and soil analysis on the?2011 mars science laboratory (MSL) mission, Planet. Space Sci. 59, 271-283 (2011).?https://doi.org/10.1016/j.pss.2010.08.021 

  42. Mahaffy PR, Richard Hodges R, Benna M, King T, Arvey R, et al., The neutral mass?spectrometer on the lunar atmosphere and dust environment explorer mission, Space Sci.?Rev. 185, 27-61 (2014). https://doi.org/10.1007/s11214-014-0043-9 

  43. Benna M, Mahaffy PR, Halekas JS, Elphic RC, Delory GT, Variability of helium, neon, and?argon in the lunar exosphere as observed by the LADEE NMS instrument, Geophys. Res.?Lett. 42, 3723-3729 (2015). https://doi.org/10.1002/2015GL064120 

  44. Mahaffy PR, Benna M, King T, Harpold DN, Arvey R, et al., The neutral gas and ion mass?spectrometer on the Mars atmosphere and volatile evolution mission, Space Sci. Rev. 195,?49-73 (2015). https://doi.org/10.1007/s11214-014-0091-1 

  45. Bougher SW, Roeten KJ, Olsen K, Mahaffy PR, Benna M, The structure and variability of?Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: seasonal and?solar activity trends in scale heights and temperatures, J. Geophys. Res. Space Phys. 122,?1296-1313 (2016). https://doi.org/10.1002/2016JA023454 

  46. England SL, Liu G, Yigit E, Mahaffy PR, Elrod M, et al., MAVEN NGIMS observations of?atmospheric gravity waves in the Martian thermosphere, J. Geophys. Res. Space Phys. 122,?2310-2335 (2016). https://doi.org/10.1002/2016JA023475 

  47. Bayer T, Bittner M, Buffington B, Dubos G, Ferguson E, et al., Europa Clipper mission:?preliminary design report, in 2019 IEEE Aerospace Conference, Big Sky, MT, 2-9 Mar 2019. 

  48. Fohn M, Galli A, Vorburger A, Tulej M, Lasi D, et al., Description of the mass spectrometer?for the Jupiter icy moons explorer mission, in 2021 IEEE Aerospace Conference, Big Sky,?MT, 6-13 Mar 2021. 

  49. Arevalo R, Brinckerhoff W, Amerom F, Danell R, Pinnick V, et al., Design and demonstration of the Mars organic molecule analyzer (MOMA) on the ExoMars 2018 rover, in?2015 IEEE Aerospace Conference, Big Sky, MT, 7-14 Mar 2015. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로