$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

LC-MS/MS를 이용한 해수 및 수산용수 중 플루오로퀴놀론계 항생제 동시 분석법 정립
Simultaneous Analysis of Prohibited Antibiotics (Fluoroquinolones) in Seawater and Effluents Released by Aquaculture Using LC-MS/MS 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.56 no.4, 2023년, pp.428 - 437  

이미경 (국립수산과학원 기후환경연구부 해양환경연구과) ,  이인석 (국립수산과학원 서해수산연구소) ,  최민규 (국립수산과학원 기후환경연구부 해양환경연구과) ,  이성규 (국립수산과학원 기후환경연구부 해양환경연구과) ,  이원찬 (국립수산과학원 기후환경연구부 해양환경연구과)

Abstract AI-Helper 아이콘AI-Helper

A simultaneous analytical method was developed and validated for the analysis of prohibited fluoroquinolone (FQ) antibiotics including norfloxacin, ofloxacin, and pefloxacin, released by aquaculture in seawater and effluents. The samples were filtered, and extracts were obtained using a solid phase ...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • 개정된 식품의 기준 및 규격에 의해 2020년 4월부터 시행되어 식품에 잔류하면 안되는 금지 의약품으로 지정된 NOFX, OFX 및 PEFX의 3종 FQs 항생제에 대하여 기존 분석법을 개선하여 최적의 분석법을 정립하였다. 확립된 분석법은 UPLC-MS/MS 기반으로 XDB-C18 컬럼을 장착하여, 우수한 감도와 분리 결과를 나타내는 이동상과 구배를 선정하였다. 본 분석법은 이전 연구 결과와 비교했을 때, 유사하거나 더 우수한 수준의 분석법 유효성 결과들을 보였다.

대상 데이터

  • 전처리 과정에서 사용된 암모니아수는 MeOH에, 포름산 암모늄과 포름산 희석에는 초순수를 각각 사용하였다. 고상추출(solid phase extraction, SPE) 과정에서 사용된 카트리지인 Oasis HLB (200 mg, 6 cc)는 Waters (Milford, MA, USA) 제품을 구입하였다. 시료 여과에 사용한 유리섬유여과지(GF/F, 47 mm circle, 0.
  • 아세토니트릴(acetonitrile, ACN)과 메탄올(methanol, MeOH)을 포함한 모든 유기용매 및 초순수는 J.T.Baker (Phillipsburg, NJ, USA)의 제품을 사용하였고, 암모니아수(ammonia solution)는 Merck (Darmstadt, Germany)에서 구입하여 사용하였다. 포름산 암모늄(ammonium formate) 및 포름산(formic acid) 등의 분석용 시약은 Wako Pure Chemical Industries (Tokyo, Japan)의 제품을 사용하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (37)

  1. Adeleye AS, Xue J, Zhao Y, Taylor AA, Zenobio JE, Sun Y and?Zhu Y. 2022. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments.?J Hazard Mater 424, 127284. https://doi.org/10.1016/j.jhazmat.2021.127284. 

  2. Aristilde L, Melis A and Sposito G. 2010. Inhibition of photosynthesis by a fluoroquinolone antibiotic. Environ Sci Technol 44, 1444-1450. https://doi.org/10.1021/es902665n. 

  3. Barry C. 1993. The analytical testing followed by laboratory?services division of agriculture Canada for veterinary drug?residues in eggs. In: Proceedings of the Euroresidues II?Conference on Residues of Veterinary in Food. Netherlands,?170-175. 

  4. Chen Y, Xie Q, Wan J, Yang S, Wang Y and Fan H. 2020. Occurrence and risk assessment of antibiotics in multifunctional?reservoirs in Dongguan, China. Environ Sci Pollut Res 27,?13565 -13574. https://doi.org/10.1007/s11356-019-07436-5. 

  5. Daughton CG and Ternes TA. 1999. Pharmaceuticals and personal care products in the environment: agents of subtle?change. Environ Health Perspect 107, 907-938. https://doi.org/10.1289/ehp.99107s6907. 

  6. EMA (European Medicines Agency). 2002. Veterinary medicines. Retrieved from http://www.ema.europa.eu/en/aboutus/who-we-are/veterinary-medicines on Jul 13, 2022. 

  7. Guo X, Xiaojun L, Zheng A, Chen S and Wang N. 2020. Antibiotic contamination in a typical water-rich city in southeast?China: A concern for drinking water resource safety. J Environ Sci Health B 55, 193-209. https://doi.org/10.1080/03601234.2019.1679563. 

  8. Heo GJ, Park SC and Kim DW. 1998. A study on efficacy and?safety of quinolone antibacterial (Ciprofloxacin) to bacterial?diseases in cultured fish, Cyprinus caprio and Oncorhynchus mykiss. Korean J Vet Public Health 22, 175-186. 

  9. Hernandez FELIX, Calisto-Ulloa N, Gomez-Fuentes C, Gomez?M, Ferrer J, Gonzalez-Rocha G and Montory M. 2019. Occurrence of antibiotics and bacterial resistance in wastewater?and sea water from the Antarctic. J Hazard Mater 363, 447-456. https://doi.org/10.1016/j.jhazmat.2018.07.027. 

  10. Horie M, Saito K, Nose N and Nakazawa H. 1994. Simultaneous determination of benofloxacin, danofloxacin, enrofloxacin and ofloxacin in chicken tissues by high-performance?liquid chromatography. J Chromatogr B Biomed Appl 653,?69-76. https://doi.org/10.1016/0378-4347(93)e0428-s. 

  11. Kim HY, Shin MS, Choi HJ, Park SJ, Song JS, Cheon SY, Choi?SH, Lee HJ, Kim YS and Choi JC. 2009. Analysis of fluoroquinolone antibiotics in foods. Korean J Food Sci Technol?41, 636-643. 

  12. Kim HY, Lee IS and Oh JE. 2017. Human and veterinary?pharmaceuticals in the marine environment including fish?farms in Korea. Sci Total Environ 579, 940-949. https://doi.org/10.1016/j.scitotenv.2016.10.039. 

  13. Kim JH, Hong SL, Kang TB, Lee HK and Lee SH. 2010. Establishment of an analytical method of fluoroquinolones in?milk by HPLC. Korean J Food Sci Technol 42, 521-526. 

  14. Koga H, Itoh A, Murayama S, Suzue S and Irikura T. 1980.?Structure-activity relationships of antibacterial 6, 7-and?7, 8-disubstituted 1-alkyl-1, 4-dihydro-4-oxoquinoline-3-carboxylic acids. J Med Chem 23, 1358-1363. https://doi.org/10.1021/jm00186a014. 

  15. Koh BRD, Park SD, Jang MS, Na HM and Kim YH. 2005.?Surveys on the residual level of fluoroquinolones in eggs.?Korean J Vet Serv 28, 235-243. 

  16. Kummerer K. 2009. Antibiotics in the aquatic environment -?A review - Part II. Chemosphere 75, 435-441. https://doi.org/10.1016/j.chemosphere.2008.12.006. 

  17. Le Bris H and Pouliquen H. 2004. Experimental study on bioaccumulation of oxytetracycline and oxolinic acid by the?blue mussel (Mytilus edulis). An evaluation of its ability?to bio-monitor antibiotics in the marine environment. Mar?Pollut Bull 48, 434-440. https://doi.org/10.1016/j.marpolbul.2003.08.018. 

  18. Lee JH, Lee JH and Cho Y. 2008. Teratological effects of enrofloxacin on the embryos and fetus during the hatching of?chicken eggs. J Environ Health Sci 34, 292-299. 

  19. Lee M, Lee IS, Choi M and Lee W. 2020. Simultaneous analysis of four nitrofurans and chloramphenicol antibiotics in?seawater and fisheries water using LC-MS/MS. J Environ?Anal Health Toxicol 23, 81-89. https://doi.org/10.36278/jeaht.23.2.81. 

  20. Llovo J, Mateo E, Munoz A, Urquijo M, On SL and FernandezAstorga A. 2003. Molecular typing of Campylobacter jejuni?isolates involved in a neonatal outbreak indicates nosocomial transmission. J Clin Microbiol 41, 3926-3928. https://doi.org/10.1128/JCM.41.8.3926-3928.2003. 

  21. Lunestad BT. 1992. Fate and effects of antibacterial agents in?aquatic environments. In: Chemotherapy in Aquaculture:?From Theory to Reality. Office Internat. des Epizooties,?Paris, France, 152-161. 

  22. Morales-Munoz S, Luque-Garcia JL and Luque de Castro MD. 2004. Continuous microwave-assisted extraction coupled?with derivatization and fluorimetric monitoring for the determination of fluoroquinolone antibacterial agents from?soil samples. J Chromatogr A 1059, 25-31. https://doi.org/10.1016/j.chroma.2004.09.086. 

  23. Nakata H, Kannan K, Jones PD and Giesy JP. 2005. Determination of fluoroquinolone antibiotics in wastewater effluents?by liquid chromatography-mass spectrometry and fluorescence detection. Chemosphere 58, 759-766. https://doi.org/10.1016/j.chemosphere.2004.08.097. 

  24. Park EH, Kim JA, Choi SH, Bin JH, Cheigh HS, Suk DH, Lee?SC and Kim YH. 2007. Isolation and antimicrobial susceptibility of Campylobacter jejuni from diarrhea patients. J Life?Sci 17, 811-815. 

  25. Park EJ, Lim JH and Lee SM. 2004. Determination and survey?of fluoroquinolones residue in chicken muscle by HPLC?with fluorescence detector. J Food Saf Hyg 19, 12-18. 

  26. Park S, Kim H, Choi B, Hong CO, Lee SY, Jeon I and Lee?KJ. 2019. The development and validation of a novel liquid chromatography tandem mass spectrometry (LC-MS/MS) procedure for the determination of fluoroquinolones?residues in chicken muscle using modified QuEChERS?(quick, easy, cheap, effective, rugged and safe) method.?Korean J Vet Serv 42, 289-296. https://doi.org/10.7853/kjvs.2019.42.4.289. 

  27. Peng L and Farkas T. 2008. Analysis of basic compounds?by reversed-phase liquid chromatography-electrospray?mass spectrometry in high-pH mobile phases. J Chromatogr A 1179, 131-144. https://doi.org/10.1016/j.chroma.2007.11.048. 

  28. Qin D, Zhao M, Wang J and Lian Z. 2020. Selective extraction?and detection of norfloxacin from marine sediment and seawater samples using molecularly imprinted silica sorbents?coupled with HPLC. Mar Pollut Bull 150, 110677. https://doi.org/10.1016/j.marpolbul.2019.110677. 

  29. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, Von Gunten U and Wehrli B. 2006. The challenge?of micropollutants in aquatic systems. Science 313, 1072-1077. https://doi.org/10.1126/science.1127291. 

  30. Seifrtova M, Novakova L, Lino C, Pena A and Solich P. 2009.?An overview of analytical methodologies for the determination of antibiotics in environmental waters. Anal Chim Acta?649, 158-179. https://doi.org/10.1016/j.aca.2009.07.031. 

  31. Serra-Compte A, Alvarez-Munoz D, Sole M, Caceres N, Barcelo?D and Rodriguez-Mozaz S. 2019. Comprehensive study of?sulfamethoxazole effects in marine mussels: Bioconcentration, enzymatic activities and metabolomics. Environ Res?173, 12-22. https://doi.org/10.1016/j.envres.2019.03.021. 

  32. Serra-Compte A, Pikkemaat MG, Elferink A, Almeida D, Diogene J, Campillo JA and Rodriguez-Mozaz S. 2021. Combining an effect-based methodology with chemical analysis?for antibiotics determination in wastewater and receiving?freshwater and marine environment. Environ Pollut 271, 116313. https://doi.org/10.1016/j.envpol.2020.116313. 

  33. USFDA (U.S. Food and Drug Administration). 2003. Approved?Animal Drug Products (Green book). Retrieved from?https://www.fda.gov/animal-veterinary/products/approved-animal-drug-products-green-book on Jul 13, 2022. 

  34. Van Doorslaer X, Dwulf J and Van Langenhve H. 2014. Fluoroquinolone antibiotics: An emerging class of environmental micropollutants. Sci Total Environ 500-501, 250-269.?https://doi.org/10.1016/j.scitotenv.2014.08.075. 

  35. Xie H, Wang X, Chen J, Li X, Jia G, Zou Y and Cui Y. 2019.?Occurrence, distribution and ecological risks of antibiotics and pesticides in coastal waters around Liaodong Peninsula, China. Sci Total Environ 656, 946-951. https://doi.org/10.1016/j.scitotenv.2018.11.449. 

  36. Zhang R, Kang Y, Zhang R, Han M, Zeng W, Wang Y and?Yang Y. 2021. Occurrence, source, and the fate of antibiotics in mariculture ponds near the Maowei Sea, South?China: Storm caused the increase of antibiotics usage. Sci?Total Environ 752, 141882. https://doi.org/10.1016/j.scitotenv.2020.141882. 

  37. Ziarrusta H, Val N, Dominguez H, Mijangos L, Prieto A,?Usobiaga A and Olivares M. 2017. Determination of fluoroquinolones in fish tissues, biological fluids, and environmental waters by liquid chromatography tandem mass?spectrometry. Anal Bioanal Chem 409, 6359-6370. https://doi.org/10.1007/s00216-017-0575-4. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로