$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 수학 교과서 과제의 수학적 모델링 과제로의 변형 과정에서 겪는 초등학교 교사의 어려움과 수학적 모델링 과제 개발을 위한 지식의 변화: 한 경력 교사의 사례를 중심으로
Analyzing an elementary school teacher's difficulties and mathematical modeling knowledge improvement in the process of modifying a mathematics textbook task to a mathematical modeling task: Focused on an experienced teacher 원문보기

Journal of the Korean Society of Mathematical Education. Series A. The Mathematical Education, v.62 no.3, 2023년, pp.363 - 380  

정혜윤 (한국교육과정평가원)

초록
AI-Helper 아이콘AI-Helper

본 연구의 목적은 초등학교 교사가 수학 교과서 과제를 수학적 모델링 과제로 변형하는 과정에서 경험하는 어려움과 수학적 모델링 과제 개발을 위한 지식 변화의 사례를 분석하는 것이다. 이를 위해 10년 경력의 초등교사가 교사연구공동체의 반복적인 논의에 참여하면서 초등학교 5학년 수학의 자료와 규칙성 영역 중 평균 지도를 위한 과제를 수학적 모델링 과제로 변형하였다. 연구결과, 첫째, 교사는 과제 변형 과정에서 현실성의 반영, 수학적 모델링 과제의 적절한 인지적 수준 설정, 수학적 모델링 과정에 따른 세부 과제의 제시에 어려움을 겪었다. 둘째, 반복된 과제 변형을 통해, 교사는 학습 내용과 학생의 인지적 수준을 고려한 현실성 있는 과제의 개발, 과제의 복잡성 및 개방성 조정을 통한 과제의 인지적 수준 조정, 학생의 과제 해결 과정에 대한 사고실험을 통한 수학적 모델링 과정에 따른 세부 과제의 제시를 수행할 수 있었으며, 이는 수학적 모델링의 개념과 과제의 특징 등 수학적 모델링 과제 개발을 위해 요구되는 교사 지식이 향상되었음 보여준다. 본 연구결과는 향후 수학적 모델링 교사교육과 관련하여, 교과서 과제 변형을 통한 수학적 모델링 과제 개발 역량 향상의 기회를 제공하는 교사교육, 수학적 모델링의 이론 및 실제를 결합한 교사교육, 교사연구공동체에의 참여를 통한 교사교육이 필요함을 보여준다.

Abstract AI-Helper 아이콘AI-Helper

This study analyzed the difficulties and mathematical modeling knowledge improvement that an elementary school teacher experienced in modifying a mathematics textbook task to a mathematical modeling task. To this end, an elementary school teacher with 10 years of experience participated in teacher-r...

주제어

표/그림 (10)

참고문헌 (64)

  1. Andersson, A., Ryan, U., Herbel-Eisenmann, B., Huru, H. L., & Wagner, D. (2022). Storylines in public news media about mathematics education?and minoritized students. Educational Studies in Mathematics, 111(2), 323-343. https://doi.org/10.1007/s10649-022-10161-5 

  2. Arleback, J. B., Doerr, H. M., & O'Neil, A. H. (2013). A modeling perspective on interpreting rates of change in context. Mathematical Thinking and?Learning, 15(4), 314-336. https://doi.org/10.1080/10986065.2013.834405 

  3. Asempapa, R. S. (2015). Mathematical modeling: Essential for elementary and middle school students. Journal of Mathematics Education, 8(1), 16-29. 

  4. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. 

  5. Barquero, B., Bosch, M., & Romo, A. (2018). Mathematical modelling in teacher education: Dealing with institutional constraints. ZDM, 50(1-2),?31-43. https://doi.org/10.1007/s11858-017-0907-z 

  6. Blomhoj, M., & Kjeldsen, T. H. (2006). Teaching mathematical modelling through project work: Experiences from an in-service course for upper?secondary teachers. ZDM, 38(2), 163-177. https://doi.org/10.1007/BF02655887 

  7. Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Ed.), The Proceedings of the 12th?International Congress on Mathematical Education (pp. 73-96). Springer International Publishing. 

  8. Borromeo Ferri, R. (2018). Learning how to teach mathematical modeling: In school and teacher education. Springer. 

  9. Boston, M. D., & Smith, M. S. (2011). A 'task-centric approach' to professional development: Enhancing and sustaining mathematics teachers'?ability to implement cognitively challenging mathematical tasks. ZDM Mathematics Education, 43, 965-977. https://doi.org/10.1007/s11858-011-0353-2 

  10. Caron, F. (2019). Approaches to investigating complex dynamical systems. In G. A. Stillman, & J. P. Brown (Eds.), Lines of inquiry in mathematical?modelling research in education (pp. 83-103). Springer Nature Switzerland AG. http://dx.doi.org/10.1007/978-3-030-14931-4_5 

  11. Chamberlin, S., Payne, A. M., & Kettler, T. (2022). Mathematical modeling: A positive learning approach to facilitate student sense making in?mathematics. International Journal of Mathematical Education in Science and Technology, 53(4), 858-871. https://doi.org/10.1080/0020739X.2020.1788185 

  12. Chan, E. C. M. (2010). Tracing primary 6 students' model development within the mathematical modelling process. Journal of Mathematical?Modelling and Application, 1(3), 40-57. 

  13. Chan, E. C. M., Ng, D. K. E., Widjaja, W., & Seto, C. (2015). A case study on developing a teacher's capacity in mathematical modelling. The?Mathematics Educator, 16(1), 45-74. http://math.nie.edu.sg/ame/matheduc/tme/tmeV16_1/TME16_3.pdf 

  14. Chang, H. W., Choi, H. Y., Kang, Y. J., & Kim, E. H. (2019). Development and application of mathematical modeling task for the lower grade?elementary school students. Journal of Elementary Mathematics Education in Korea, 23(1), 93-117. 

  15. Choi, J. S. (2017). Prospective teachers' perception of mathematical modeling in elementary class. Journal of Educational Research in Mathematics,?27(2), 313-328. 

  16. Creswell, J. W. (2014). Qualitative inquiry and research design (2nd ed.): Choosing among five approaches. Sage publications. 

  17. Doerr, H. M., & English, L. D. (2003). A modeling perspective on students' mathematical reasoning about data. Journal for Research in Mathematics?Education, 34(2), 110-136. https://doi.org/10.2307/30034902 

  18. English, L. D. (2006). Mathematical modeling in the primary school: Children's construction of a consumer guide. Educational Studies in?Mathematics, 63(3), 303-323. https://doi.org/10.1007/s10649-005-9013-1 

  19. English, L. D., & Watson, J. (2018). Modelling with authentic data in sixth grade. ZDM, 50, 103-115. https://doi.org/10.1007/S11858-017-0896-Y 

  20. Galbraith, P. (2007). Dreaming a 'possible dream': More windmills to conquer. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical?modelling: Education, engineering and economics (pp. 44-62). Horwood. https://doi.org/10.1533/9780857099419.2.43 

  21. Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM, 38(2), 143-162. https://doi.org/10.1007/BF02655886 

  22. Goodchild, S., Fuglestad, A. B., & Jaworski, B. (2013). Critical alignment in inquiry-based practice in developing mathematics teaching.?Educational Studies in Mathematics, 84, 393-412. 

  23. Gravemeijer, K., Stephan, M., Julie, C., Lin, F-L., & Ohtani, M. (2017). What mathematics education may prepare students for the society of the?future? International Journal of Science and Mathematics Education, 15(1), 105-123. https://doi.org/10.1007/s10763-017-9814-6 

  24. Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers' topic?specific knowledge of students. Journal for Research in Mathematics Education, 39(4), 372-400. 

  25. Jaworski, B. (2008). Building and sustaining inquiry communities in mathematics teaching development: Teachers and didacticians in collaboration.?In K. Krainer, & T. Wood (Eds.), International handbook of mathematics teacher education: Volume 3 (pp. 309-330). Brill Sense. 

  26. Jung, H. Y., & Lee, K. H. (2021). Promoting in-service teacher's mathematical modeling teaching competencies by implementing and modifying?mathematical modeling tasks. Journal of Educational Research in Mathematics, 31(1), 35-62. https://doi.org/10.29275/jerm.2021.02.31.1.35 

  27. Jung, H. Y., Lee, K. H., & Jung, J. H. (2020). Analyzing real world tasks of 6th grade textbook from a mathematical modeling perspective:?Focused on the curriculum for revised 2011 and 2015. The Journal of Learner-Centered Curriculum and Instruction, 20(18), 1313-1340. http://doi.org/10.22251/jlcci.2020.20.18.1313 

  28. Kaiser, G., & Stender, P. (2013) Complex modelling problems in co-operative, self-directed learning environments. In G. Stillman, G. Kaiser, W.?Blum, & J. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 277-293). Springer. 

  29. Kang, H., & Choi, E. (2021). Pre-service teachers' errors and difficulties in task modification focusing on cognitive demand. The Mathematical?Education, 60(1), 61-76. http://doi.org/10.7468/mathedu.2021.60.1.61 

  30. Kim, H. L., & Lee, K. H. (2016). Pre-service secondary mathematics teachers' modification of derivative tasks. School Mathematics, 18(3), 711-731. 

  31. Kim. M., Hong, J., & Kim, E. (2009). Exploration of teaching method through analysis of cases of mathematical modeling in elementary?mathematics. The Mathematical Education, 48(4), 365-385. 

  32. Kim, M. K. (2010). Mathematical modeling in the elementary school curriculum. Kyowoosa. 

  33. Kim, Y. (2020). Teacher education for mathematical modeling: A case study. East Asian Mathematical Journal, 36(2), 173-201. https://doi.org/10.7858/eamj.2020.014 

  34. Kwon, H. Y., Jang, Y. J., Cho, A. R., & Kwon, O. N. (2022). Investigating the specific application of pedagogical architecture to mathematical?modeling instruction design in high school mathematics class. The Journal of Learner-Centered Curriculum and Instruction, 22(21), 609-629.?http://doi.org/10.22251/jlcci.2022.22.21.609 

  35. Kwon, J., & Kim, G. (2013). An analysis of mathematical tasks in the middle school geometry. The Mathematical Education, 52(1), 111-128. 

  36. Lee, H., & Kim, G. (2013). Pre-service secondary mathematics teachers' understanding and modification of tasks in mathematics textbooks. Journal?of Educational Research in Mathematics, 23(3), 353-371. 

  37. Lee, K. H. (2010). Searching for Korean perspective on mathematics education through discussion on mathematical modeling. Journal of?Educational Research in Mathematics, 20(3), 221-239. 

  38. Lee, K. H. (2018). Changes in attitude toward textbook task modification using confrontation of complexity in a collaborative inquiry: Two case?studies. In G. Kaiser, H. Forgasz, M. Graven, A. Kuzniak, E. Simmt, & B. Xu (Eds.), Invited Lectures from the 13th International Congress on?Mathematical Education. Springer. 

  39. Lee, K., Seo, M., Lee, E., Park, M., & Song, C. (2019). Learning of teacher community through designing of mathematical induction tasks:?A case of a co-learning inquiry community. Journal of Educational Research in Mathematics, 29(3), 425-452. http://doi.org/10.29275/jerm.2019.8.29.3.425 

  40. Maass, K. (2010). Classification scheme for modelling tasks. Journal fur Mathematik-Didaktik, 31(2), 285-311. https://doi.org/10.1007/s13138-010-0010-2 

  41. Ministry of Education (2021). Mathematics 5-2. Sejong. 

  42. Ministry of Education (2022). 2022 revised mathematics curriculum. Ministry of Education Notice 2023-33 [supplement 8]. Sejong. 

  43. Mousoulides, N., Christou, C., & Sriraman, B. (2008). A modeling perspective on the teaching and learning of mathematical problem solving.?Mathematical Thinking and Learning, 10(3), 293-304. https://doi.org/10.1080/10986060802218132 

  44. Na, G. S., Park, M. M., Kim, D. W., Kim, Y., & Lee, S. J. (2018). Exploring the direction of mathematics education in the future age. Journal of?Educational Research in Mathematics, 28(4), 437-478. http://doi.org/10.29275/jerm.2018.11.28.4.437 

  45. Oh, Y. Y., & Park, J. K. (2019). Exploring the task types of mathematical modeling applied to elementary school. Korean Journal of Elementary?Education, 30(1), 87-99. http://doi.org/10.20972/kjee.30.1.201903.87 

  46. Palsdottir, G., & Sriraman, B. (2017). Teacher's views on modeling as a creative mathematical activity. In R. Leikin, & B. Sriraman (Eds.),?Creativity and giftedness (pp. 47-55). Springer. 

  47. Park, J. (2019). Prospective elementary mathematics teachers' difficulties on textbook task modification: Focusing on fraction tasks. Journal of?Educational Research in Mathematics, 29(4), 551-575. http://doi.org/10.29275/jerm.2019.11.29.4.551 

  48. Park, S., & Han, S. (2018). Reconstruction and application of reforming textbook problems for mathematical modeling process. The Mathematical?Education, 57(3), 289-309. http://doi.org/10.7468/mathedu.2018.57.3.289 

  49. Remillard, J. T., Harris, B., & Agodini, R. (2014). The influence of curriculum material design on opportunities for student learning. ZDM, 46(5),?735-749. https://doi.org/10.1007/S11858-014-0585-Z 

  50. Simon, M., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning: An elaboration of the hypothetical learning?trajectory. Mathematical Thinking and Learning, 6(2), 91-104. https://doi.org/10.1207/s15327833mtl0602_2 

  51. Slavit, D., & Nelson, T. H. (2010). Collaborative teacher inquiry as a tool for building theory on the development and use of rich mathematical tasks.?Journal of Mathematics Teacher Education, 13(3), 201-221. 

  52. Stein, M. K., & Kaufman, J. H. (2010). Selecting and supporting the use of mathematics curricula at scale. American Educational Research Journal,?47(3), 663-693 https://doi.org/10.3102/0002831209361210 

  53. Stein, M. K., Smith, M. S., Henningsen, M. A., & Silver, E. S. (2009). Implementing standards-based mathematical instruction: A casebook for?professional development. Teachers College Press. 

  54. Stender, P., & Kaiser, G. (2015). Scaffolding in complex modelling situations. ZDM, 47(7), 1255-1267. https://doi.org/10.1007/s11858-015-0741-0 

  55. Sullivan, P., Clarke, D., & Clarke, B. (2013). Teaching with tasks for effective mathematics learning. Springer Science & Business Media. 

  56. Sullivan, P., & Mornane, A. (2014). Exploring teachers' use of, and students' reactions to, challenging mathematics tasks. Mathematics Education?Research Journal, 26(2), 193-213. https://doi.org/10.1007/s13394-013-0089-0 

  57. Thompson, D. R., Senk, S. L., & Johnson, G. J. (2012). Opportunities to learn reasoning and proof in high school mathematics textbooks. Journal?for Research in Mathematics Education, 43(3), 253-295. https://doi.org/10.5951/jresematheduc.43.3.0253 

  58. Tracy, S. J. (2010). Qualitative quality: Eight "big-tent" criteria for excellent qualitative research. Qualitative Inquiry, 16(10), 837-851. https://doi.org/10.1177/1077800410383121 

  59. Watson, A., & Sullivan, P. (2008). Teachers learning about tasks and lessons. In S. Llinares, & O. Chapman (Eds.), The Handbook of mathematics?teacher education, 2 (pp. 107-134). Brill Sense. 

  60. Williams, J., Roth, W. M., Swanson, D., Doig, B., Groves, S., Omuvwie, M., Borromeo Ferri, R., & Mousoulides, N. (2016). Interdisciplinary?mathematics education. Springer Nature. 

  61. Yim, J. (2022). Various meanings of average and implications for teaching in elementary school. Journal of Elementary Mathematics Education in?Korea, 26(3), 155-173. http://doi.org/10.54340/kseme.2022.26.3.1 

  62. Yin, R. K. (2003). Case study research: Design and methods. Sage Publications. 

  63. Yun, S., & Chang, H. (2023). An analysis of metacognition of elementary math gifted students in mathematical modeling using the task 'Floor?Decorating.'Communications of Mathematical Education, 37(2), 257-276. http://doi.org/10.7468/jksmee.2023.37.2.257 

  64. Zaslavsky, O. (1995). Open-ended tasks as a trigger for mathematics teachers' professional development. For the Learning of Mathematics, 15(3),?15-20. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로