$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

중금속 오염 토양의 토양세척 정화 후 토양 건강성 회복을 위한 요소 기술 개발
Development of Elemental Technology for the Revitalization of Heavy Metal Contaminated Soil Remediated by Soil Washing 원문보기

지하수토양환경 = Journal of soil and groundwater environment, v.28 no.5, 2023년, pp.36 - 50  

이승현 (경상대학교 지질과학과 및 기초과학연구소(RINS)) ,  이종환 (경상대학교 지질과학과 및 기초과학연구소(RINS)) ,  이우춘 ((주)호성 HS환경기연구소) ,  이상우 ((주)호성 HS환경기연구소) ,  김순오 (경상대학교 지질과학과 및 기초과학연구소(RINS))

Abstract AI-Helper 아이콘AI-Helper

Soil health can deteriorate through both contamination and remediation. Accordingly, revitalization processes are needed to reuse or recycle the remediated soil. The study was conducted to assess the changes in soil health parameters of heavy metals-contaminated soil during soil washing process. In ...

주제어

표/그림 (9)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구에서는 토양 세척 정화토의 건강성을 증진시켜 다양한 용도로 재사용하기 위한 요소 회복기술을 개발하고자 수행되었다. 본 연구에서 정의한 요소 회복기술이란 토양의 건강성 회복을 위한 다양한 제제의 성능을 평가하기 위하여 각 제제별 투여량과 회복 기간에 따른 토양 건강성의 회복 수준을 정량화하는 기술이다.
본문요약 정보가 도움이 되었나요?

참고문헌 (58)

  1. Alaboudi, K.A., Ahmed, B., and Brodie, G., 2020, Soil washing?technology for removing heavy metals from a contaminated?soil: A case study, Polish J. Environ. Stud., 29(2), 1029-1036. 

  2. Alkorta, I., Aizpurua, A., Riga, P., Albizu, I., Amezaga, I., and?Garbisu, C., 2003, Soil enzyme activities as biological indicators of soil health, Rev. Environ. Health, 18(1), 65-73. 

  3. Altland, J.E. and Jeong, K.Y., 2016, Dolomitic lime amendment?affects pine bark substrate pH, nutrient availability, and plant?growth: A review, HortTechnology, 26(5), 565-573. 

  4. Arthur, E., Cornelis, W.M., Vermang, J., and De Rocker, E.,?2011, Amending a loamy sand with three compost types: impact?on soil quality, Soil Use and Management, 27(1), 116-123. 

  5. Assefa, S. and Tadesse, S., 2019, The principal role of organic?fertilizer on soil properties and agricultural productivity-a review,?Agri Res and Tech: Open Access J., 22(2), 556192. 

  6. Awasthi, G., Nagar, V., Mandzhieva, S., Minkina, T., Sankhla,?M.S., Pandit, P.P., Aseri, V., Awasthi, K.K., Rajput, V.D., Bauer,?T., and Srivastava, S., 2022, Sustainable amelioration of heavy?metals in soil ecosystem: Existing developments to emerging?trends, Minerals, 12(1), 85. 

  7. Bai, S.H., Reverchon, F., Xu, C.Y., Xu, Z., Blumfield, T.J.,?Zhao, H., Zwieten, L.V., and Wallace, H.M., 2015, Wood biochar increases nitrogen retention in field settings mainly through?abiotic processes, Soil Biology and Biochemistry, 90(1), 232-240. 

  8. Bossolani, J.W., Crusciol, C.A.C., Merloti, L.F., Moretti, L.G.,?Costa, N.R., Tsai, S.M., and Kuramae, E.E., 2020, Long-term?lime and gypsum amendment increase nitrogen fixation and?decrease nitrification and denitrification gene abundances in the?rhizosphere and soil in a tropical no-till intercropping system,?Geoderma, 375, 114476. 

  9. Chibuike, G.U. and Obiora, S.C., 2014, Heavy metal polluted?soils: effect on plants and bioremediation methods, Appl. Environ. Soil Sci., 752708. 

  10. Cooper, J., Greenberg, I., Ludwig, B., Hippich, L., Fischer, D.,?Glaser, B., and Kaiser, M., 2020, Effect of biochar and compost?on soil properties and organic matter in aggregate size fractions?under field conditions, Agr. Ecosys. Environ., 295, 106882. 

  11. Demir, Z., 2019, Effects of vermicompost on soil physicochemical properties and lettuce (Lactuca sativa Var. Crispa) yield in?greenhouse under different soil water regimes, Communications?in Soil Science and Plant Analysis, 50(17), 2151-2168. 

  12. Dick, W.A., 1984, Influence of long-term tillage and crop rotation combinations on soil enzymes activities, Soil Sci. Soc. Am.?J., 48, 569-574. 

  13. Dindar, E., Sagban, F.O.T., and Baskaya, H.S., 2015, Variations?of soil enzyme activities in petroleum-hydrocarbon contaminated soil, Inter. Biodeterioration & Biodegradation, 105, 268-275. 

  14. Eivazi, F. and Tabatabai, M.A., 1997, Phosphatases in soils, Soil?Biol. Biochem., 9(3), 167-177. 

  15. Ekenler, M. and Tabatabai, M.A., 2004, Arylamidase and amidohydrolases in soils as affected by liming and tillage systems,?Soil Tillage Res., 77(2), 157-168. 

  16. Glaser, B., Wiedner, K., Seelig, S., Schmidt, H.P., and Gerber,?H., 2015, Biochar organic fertilizers from natural resources as?substitute for mineral fertilizers, Agronomy for Sustainable?Development, 35, 667-678. 

  17. Higgins, S., Morrison, S., and Watson, C.J., 2012, Effect of?annual applications of pelletized dolomitic lime on soil chemical properties and grass productivity, Soil use and Management,?28(1), 62-69. 

  18. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., and?Beeregowda, K.N., 2014, Toxicity, mechanism and health?effects of some heavy metals, Interdiscip Toxicol., 7(2), 60-72. 

  19. Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A., and?Cao, H., 2017, Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province,?China, Chemosphere, 168, 1658-1668. 

  20. Kandeler, E. and Gerber, H., 1988, Short-term assay of soil urease activity using colorimetric determination of ammonium.?Biol. Fertil. Soils, 6, 68-72. 

  21. Karami, A., Homaee, M., Afzalinia, S., Ruhipour, H., and?Basirat, S., 2012, Organic resource management: Impacts on?soil aggregate stability and other soil physico-chemical properties, Agr. Ecosys. Environ., 148, 22-28. 

  22. KATS (Korean Agency for Technology and Standards), 2017,?KS F 2302 Standard test method for particle size distribution of?soils, 1-18. 

  23. Kemper, W.D., Rosenau, R.C., 1986, Aggregate stability and?size distribution, In: A. Klute (ed.), Methods of soil analysis,?Part 1. Physical and mineralogical methods, American Society?of Agronomy, Inc. and Soil Science Society of America, Inc.,?Madison, WI, USA, p.425-442. 

  24. Khorram, M.S., Zhang, G., Fatemi, A., Kiefer, R., Maddah, K.,?Baqar, M., Zakaria, M. P., and Li, G., 2019, Impact of biochar?and compost amendment on soil quality, growth and yield of a?replanted apple orchard in a 4-year field study, J. Sci. Food Agr.,?99(4), 1862-1869. 

  25. Kranz, C.N., McLaughlin, R.A., Johnson, A., Miller, G., and?Heitman, J.L., 2020, The effects of compost incorporation on?soil physical properties in urban soils-A concise review, J. Environ. Manag., 261, 110209. 

  26. Lee, S.-W., Lee, W.-C., Lee, S.-H., and Kim, S.-O., 2021,?Remediation of heavy metal-contaminated soil within a military?shooting range through physicochemical treatment, J. Soil?Groundwater Environ., 26(5), 9-19. 

  27. Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., and Han,?W., 2019, A review on heavy metals contamination in soil:?effects, sources, and remediation techniques, Soil Sed. Contam.:?An Inter. J., 28(4), 380-394. 

  28. Liu, J., Zhao, L., Liu, Q., Li, J., Qiao, Z., Sun, P., and Yang, Y.,?2022, A critical review on soil washing during soil remediation?for heavy metals and organic pollutants, Inter. J. Environ. Sci.?Technol., 19(1), 601-624. 

  29. Liu, L., Li, W., Song, W., and Guo, M., 2018, Remediation techniques for heavy metal-contaminated soils: Principles and applicability, Sci. total Environ., 633, 206-219. 

  30. Munoz-Rojas, M., 2018, Soil quality indicators: critical tools in?ecosystem restoration, Current Opinion in Environmental Science & Health, 5, 47-52. 

  31. Nannipieri, P., Grego, S., and Ceccanti, B., 1990, Ecological significance of the biological activity in soil. In: J.M. Bollag and G.?Stotzky (ed.), Soil biochemistry, Marcel Dekker, New York, NY,?USA, p. 293-355. 

  32. NAAS (National Academy of Agricultural Science), 2010,?Methods of soil chemical analysis; Rural development administration, Wanju, Korea. 

  33. Nannipieri. P., Grego, S., and Ceccanti, B., 1990, Ecological significance of the biological activity in soil, In: J.M. Bollag and G.?Stotzky (ed.), Soil biochemistry, Marcel Dekker, New York, p.?293-355. 

  34. Neina, D., 2019, The role of soil pH in plant nutrition and soil?remediation, Appl. Environ. Soil Sci., 2019, 5794869. 

  35. NiFoS (National institute of forest science), 2021, National forest soil acidification status, Research report 21-14, p.29. 

  36. Obiri-Nyarko, F., Duah, A.A., Karikari, A.Y., Agyekum, W.A.,?Manu, E., and Tagoe, R., 2021, Assessment of heavy metal contamination in soils at the Kpone landfill site, Ghana: Implication?for ecological and health risk assessment, Chemosphere, 282, 131007. 

  37. OECD, 2008, OECD guideline for the testing of chemicals, No.?314: Simulation tests to assess the biodegradability of chemicals discharged in wastewater, Organisation for Economic?Cooperation and Development (OECD), Paris, France. 

  38. Pepper, I.L. and Gerba, C.P., 2004, Environmental microbiology: A laboratory manual, 2nd ed., Elsevier Academic Press,?Cambridge, MA, USA. 

  39. Pereira, P., Bogunovic, I., Munoz-Rojas, M., and Brevik, E.C.,?2018, Soil ecosystem services, sustainability, valuation and?management, Current Opinion in Environmental Science &?Health, 5, 7-13. 

  40. Puissant, J., Jones, B., Goodall, T., Mang, D., Blaud, A., Gweon,?H.S., Malik, A., Jones, D.L., Clark, I.M., Hirsch, P.R., and Griffiths, R., 2019, The pH optimum of soil exoenzymes adapt to?long term changes in soil pH, Soil Biology and Biochemistry,?138, 107601. 

  41. Raffa, C.M., Chiampo, F., and Shanthakumar, S., 2021, Remediation of metal/metalloid-polluted soils: A short review, Applied?Sciences, 11(9), 4134. 

  42. RDA (Rural Development Administration), 2022, The investigation of real condition and evaluation criteria on agricultural?resources and environments, RDA notification #2022-3, appendix, Table 4. 

  43. Serrano, J., Shahidian, S., Marques da Silva, J., Moral, F., Carvajal-Ramirez, F., Carreira, E., Pereira, A., and Carvalho, M.D.,?2020, Evaluation of the effect of dolomitic lime application on?pastures-Case study in the Montado Mediterranean ecosystem,?Sustainability, 12(9), 3758. 

  44. Sharma, M.R. and Raju, N.S., 2013, Correlation of heavy metal?contamination with soil properties of industrial areas of Mysore,?Karnataka, India by cluster analysis, Inter. Res. J. Environ. Sci.,?2(10), 22-27. 

  45. Shi, W.Y., Shao, H.B., Li, H., Shao, M.A., and Du, S., 2009,?Progress in the remediation of hazardous heavy metal-polluted?soils by natural zeolite, J. Hazard. Mater., 170(1), 1-6. 

  46. Sinsabaugh, R.L. and Follstad Shah, J.J., 2012, Ecoenzymatic?stoichiometry and ecological theory, Annu. Rev. Ecol. Syst., 43,?313-343. 

  47. Skujins, J., 1978, History of abiontic soil enzyme research, In:?R.G. Burns (ed.), Soil enzymes, Academic Press, London, UK, p.?1-49. 

  48. Stott, D.E., 2019, Recommended soil health indicators and associated laboratory procedures, Soil health technical note No. 450-03, U.S. Department of Agriculture, Natural Resources Conservation Service, Washington, DC, USA. 

  49. USEPA, 1986, Test method 9080, cation-exchange capacity of?soils (Ammonium Acetate), Washington, DC, USA. 

  50. Wang, L., Rinklebe, J., Tack, F.M., and Hou, D., 2021, A review?of green remediation strategies for heavy metal contaminated?soil, Soil Use and Management, 37(4), 936-963. 

  51. Wienhold, B.J., Andrews, S.S., and Karlen, D.L., 2004, Soil?quality: a review of the science and experiences in the USA,?Environ. Geochem. Health, 26(2), 89-95. 

  52. Xian, Y., Wang, M., and Chen, W., 2015, Quantitative assessment on soil enzyme activities of heavy metal contaminated?soils with various soil properties, Chemosphere, 139, 604-608. 

  53. Yang, T. and Hodson, M. E., 2019, Investigating the use of synthetic humic-like acid as a soil washing treatment for metal contaminated soil, Sci. Total Environ., 647, 290-300. 

  54. Yi, Y.M. and Sung, K., 2015, Influence of washing treatment on?the qualities of heavy metal-contaminated soil, Ecological Engineering, 81, 89-92. 

  55. Yun, Y.K., 2017, Investigation and analysis methods for physical properties of soil, Rural Development Administration,?National Academy of Agricultural Science, Seoul, Korea. 

  56. Zhai, X., Li, Z., Huang, B., Luo, N., Huang, M., Zhang, Q., and?Zeng, G., 2018, Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ?immobilization, Sci. Total Environ., 635, 92-99. 

  57. Zhang, H., Xu, Y., Kanyerere, T., Wang, Y.S., and Sun, M.,?2022, Washing reagents for remediating heavy-metal-contaminated soil: a review, Front. Earth Sci., 10, 901570. 

  58. Zhu, H., Yang, J., Yao, R., Wang, X., Xie, W., Zhu, W., Liu, X.,?Cao, Y., and Tao, J., 2020, Interactive effects of soil amendments (biochar and gypsum) and salinity on ammonia volatilization in coastal saline soil, Catena, 190, 104527. 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로