$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

개선된 합의 모델(RCM)의 지식 교환을 통한 초등교사의 모델링 pPCK 변화 탐색
Exploring the Changes in Elementary Teachers' Modeling pPCK for Science Modeling Instructions Through Knowledge Exchange of the Refined Consensus Model 원문보기

한국과학교육학회지 = Journal of the Korean association for science education, v.44 no.1, 2024년, pp.105 - 117  

김현주 (서울교육대학교) ,  임채성 (서울교육대학교) ,  이기영 (강원대학교)

초록
AI-Helper 아이콘AI-Helper

본 연구는 개선된 합의 모델(RCM)의 세 가지 PCK 영역 간 지식 교환을 통해 초등교사의 모델링 pPCK(개인적 PCK)가 어떻게 변화되는지 탐색하였다. 이를 위해 초등교사 3인을 대상으로 한 전문적 학습공동체(PLC)에서 과학 모델링 수업에 관한 지식 교환이 이루어지도록 촉진한 뒤, 연구참여자가 두 차례 작성한 CoRe(내용 표상)를 분석하여 모델링 pPCK 변화 양상을 탐색하였다. 또한 PLC에서 연구참여자들이 나눈 담화, 심층 면담 자료를 근거 이론적 연구 방법을 활용하여 분석하였다. 연구 결과, 지식 교환으로 인해 초등교사의 모델링 pPCK 중 교육과정 지식에 있어서는 두드러진 변화가 없었으나 과학 교수 지향, 학생 이해에 대한 지식, 과학 수업 전략 지식 및 과학 평가에 대한 지식에 변화가 있었다. 또한 PLC 담화 및 심층 면담 분석을 통해 교사들의 이러한 모델링 pPCK 변화에는 모델링 수업 사례 성찰(ePCKR)과 교육 연구 기반 모델링 cPCK(집단적 PCK)가 영향을 미쳤음을 알 수 있었다. 연구 결과를 바탕으로 본 연구에서는 효과적인 교사의 모델링 PCK 개발을 위한 교육적 방법에 대해 논의하였다.

Abstract AI-Helper 아이콘AI-Helper

The purpose of this study was to explore changes in elementary teachers' modeling pPCK (personal PCK) resulting from knowledge exchange within the realms of PCK described in the Refined Consensus Model (hereafter RCM). For this purpose, a professional learning community (hereafter PLC) was establish...

주제어

표/그림 (10)

참고문헌 (75)

  1. Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G.,?Mamlok-Naaman, R., Hofstein, A., Niaz, M., Treagust, D., & Tuan,?H. l. (2004). Inquiry in science education: International perspectives.?Science Education, 88(3), 397-419. 

  2. Abell, S. (2007). Research on science teacher knowledge. In S.K. Abell &?N.G. Lederman (Eds.), Handbook of research on science education?(pp. 1105-1149). Mahwah, NJ: Lawrence Erlbaum. 

  3. Acher, A., Arca, M., & Sanmarti, N. (2007). Modeling as a teaching learning?process for understanding materials: A case study in primary education.?Science Education, 91(3), 398-418. 

  4. Akerson, V. L., Townsend, J. S., Donnelly, L. A., Hanson, D. L., Tira, P.,?& White, O. (2009). Scientific modeling for inquiring teachers network?(SMIT'N): The influence on elementary teachers' views of nature of?science, inquiry, and modeling. Journal of Science Teacher Education,?20(1), 21-40. 

  5. Alonzo, A. C., Berry, A., & Nilsson, P. (2018). Capturing and representing?the complexity of PCK in action. In A. Hume, R. Cooper, & A.?Borowski (Eds.), Repositioning pedagogical content knowledge in?teachers' professional knowledge. New York: Springer. 

  6. Alonzo, A. C., Berry, A., & Nilsson, P. (2019). Unpacking the complexity?of science teachers' PCK in action: Enacted and personal PCK.?Repositioning pedagogical content knowledge in teachers' knowledge?for teaching science, 273-288. 

  7. Barendsen, E., & Henze, I. (2019). Relating teacher PCK and teacher practice?using classroom observation. Research in Science Education, 49,?1141-1175. 

  8. Campbell, T., Oh, P. S., & Neilson, D. (2013). Reification of five types?of modeling pedagogies with model-based inquiry (MBI) modules for?high school science cla ssrooms. In M. S. Khine & I. M. Sa leh (Eds.),?Approaches and strategies in next generation science learning (pp.?106-126). Hershey, PA: IGI Global. 

  9. Carlson, J., Daehler, K. R., Alonzo, A. C., Barendsen, E., Berry, A.,?Borowski, A., ... & Wilson, C. D. (2019). The refined consensus model?of pedagogical content knowledge in science education. Repositioning?pedagogical content knowledge in teachers' knowledge for teaching?science, 77-94. 

  10. Chan, K. K. H., & Hume, A. (2019). Towards a consensus model: Literature?review of how science teachers' pedagogical content knowledge is?investigated in empirical studies. Repositioning pedagogical content?knowledge in teachers' knowledge for teaching science, 3-76. 

  11. Cho, E., Kim, C., & Choe, S. (2017). An investigation into the secondary?science teachers' perception on scientific models and modeling. Journal?of the Korean Association for Science Education, 37(5), 859-877. 

  12. Cho, H., & Nam, J. (2017). Analysis of trends of model and modeling-related?research in science education in korea. Journal of the Korean Association?for Science Education, 37(4), 539-552. 

  13. Cho, H., Nam, J., & Oh, P. (2017). A review of model and modeling in?science education: Focus on the metamodeling knowledge. Journal of?the Korean Association for Science Education, 37(2), 239-252. 

  14. Clement, J. J. (1989). Learning via model construction and criticism. In G.?Glover & R. Ronning, C. Reynolds (Eds.), Handbook of creativity:?Assessment, theory and research (pp. 341-381). New York: Plenum. 

  15. Corbin, J. M., & Strauss, A. (1990). Grounded theory research: Procedures,?canons, and evaluative criteria. Qualitative Sociology, 13(1), 3-21. 

  16. Creswell, J. W., & Poth, C. N. (2016). Qualitative inquiry and research?design: Choosing among five approaches. Sage publications. 

  17. Davis, E. A. (2004). Knowledge integration in science teaching: analysing?teachers' knowledge development. Research in Science Education,?34(1), 21-53. 

  18. Deng, Z. (2007). Transforming the subject matter: examining the intellectual?roots of pedagogical content knowledge. Curriculum Inquiry, 37(3),?279-295. 

  19. Dogan, S., Pringle, R., & Mesa, J. (2015). The impacts of professional?learning communities on science teachers' knowledge, practice and?student learning: A review. Professional Development in Education. 

  20. Duschl, R. (2008). Science education in three-part harmony: Balancing?conceptual, epistemic, and social learning goals. Review of Research?in Education, 32(1), 268-291. 

  21. Fulmer, G. W., & Liang, L. L. (2013). Measuring model-based high school?science instruction: Development and application of a student survey.?Journal of Science Education and Technology, 22(1), 37-46. 

  22. Gess-Newsome, J. (1999). Pedagogical content knowledge: An introduction?and orientation. In J. Gess-Newsome & N. G. Lederman (Eds.),?Examining pedagogical content knowledge: The construct and its?implications for science education (pp. 3-20). Dordrecht: Kluwer?Academic. 

  23. Gess-Newsome, J. (2015). A model of teacher professional knowledge and?skill including PCK: Results of the thinking from the PCK Summit.?In A. Berry, P. J. Friedrichsen, & J. Loughran (Eds.), Re-examining?pedagogical content knowledge in science education (pp. 28-42). New?York: Routledge. 

  24. Gilbert, J. K., Boulter, C., & Rutherford, M. (1998). Models in explanations,?Part 1: Horses for courses?. International Journal of Science Education,?20(1), 83-97. 

  25. Glaser, B. & Strauss, A. (1967). The discovery of grounded theory: Strategies?for qualitative research, New York: Aldine de Gruyter. 

  26. Grossman, P. L. (1990). The making of a teacher: Teacher knowledge and?teacher education. New York: Teachers College Press. 

  27. Halloun, I. A. (2007). Mediated modeling in science education. Science &?Education, 16(7-8), 653-697. 

  28. Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules,?and chemical bonds: A case study of multiple-model use in grade 11?chemistry. Science Education, 84(3), 352-381. 

  29. Henze, I., van Driel, J. H., & Verloop, N. (2008). Development of?experienced science teachers' pedagogical content knowledge of?models of the solar system and the universe. International Journal of?Science Education, 30(10), 1321-1342. 

  30. Hume, A., & Berry, A. (2011). Constructing CoRes-a strategy for building?PCK in pre-service science teacher education. Research in Science?Education, 41(3), 341-355. 

  31. Ingham, A. I., & Gilbert, J. K. (1991). The use of analogue models by?students of chemistry at higher education level. International Journal?of Science Education, 13, 203-215. 

  32. Jeong, E., Kwak, Y., & Lee, K. (2023). A case study of school-level?professional learning community using protocol for science inquiry?class. The Korean Society of Biology Education, 51(2), 220-235. 

  33. Johnson, S. K., & Stewart, J. (2002). Revising and assessing explanatory?models in a high school genetics class: A comparison of unsuccessful?and successful performance. Science Education, 86(4), 463-480. 

  34. Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers' views on the nature?of modelling, and implications for the education of modellers.?International Journal of Science Education, 24(4), 369-387. 

  35. Justi, R., & Van Driel, J. (2005). A case study of the development of a?beginning chemistry teacher's knowledge about models and modelling.?Research in Science Education, 35(2-3), 197-219. 

  36. Khan, S. (2007). Model-based inquiries in chemistry. Science Education,?91(6), 877-905. 

  37. Kim, H., Lim, C., & Lee, K. (2023). Composition and attributes of modeling?instructions and factors of teacher competence in elementary science?classes: A qualitative meta-analysis. Journal of Korean Elementary?Science Education 42(3), 434-454. 

  38. Kind, V. (2009). Pedagogical content knowledge in science education:?perspectives and potential for progress. Studies in science education,?45(2), 169-204. 

  39. Kind, V. (2017). Development of evidence-based, student-learning-oriented?rubrics for pre-service science teachers' pedagogical content knowledge.?International Journal of Science Education, 1-33. 

  40. Koponen, I. (2007). Models and modelling in physics education: a critical?re-analysis of philosophical underpinnings and suggestions for revisions.?Science and Education, 16(7-8), 751-773. 

  41. Krauss, S., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M.,?& Jordan, A. (2008). Pedagogical content knowledge and content?knowledge of secondary mathematics teachers. Journal of educational?psychology, 100(3), 716-725. 

  42. Kwak, Y. (2022). Teacher and qualitative research: Episteme and Phronesis.?Paju: Kyoyookgwahaksa 

  43. Lee, K., Jeong, E., & Kwak, Y. (2022). Exploring the applicability of PLC?protocol for enhancing science teachers' teaching expertise on inquiry?class. Journal of the Korean Association for Science Education, 42(4),?439-448. 

  44. Loughran, J. J., Berry, A., & Mulhall, P. (2004). In search of pedagogical?content knowledge in science: Developing ways of articulating and?documenting professional practice. Journal of Research in Science?Teaching, 41(4), 370-391. 

  45. Loughran, J., Berry, A., & Mulhall, P. (2006). Understanding and developing?science teachers' pedagogical content knowledge. Dordrecht: Sense?Publishers. 

  46. Loughran, J., Gunstone, R., Berry, A., Milroy, P., & Mulhall, P. (2001).?Documenting science teachers' pedagogical content knowledge through?PaP-eRs. Reserch in Science Education, 31(2), 289-307. 

  47. Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and?development of pedagogical content knowledge for science teaching.?In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical?content knowledge: The construct and its implications for science?education (pp. 95-132). Dordrecht: Kluwer Academic. 

  48. Marshall, C., & Rossman, G. B. (2014). Designing qualitative research. Sage?publications. 

  49. Miller, E., Manz, E., Russ, R., Stroupe, D., & Berland, L. (2018). Addressing?the epistemic elephant in the room: Epistemic agency and the next?generation science standards. Journal of Research in Science Teaching,?55(7), 1053-1075. 

  50. Ministry of Education(MOE). (2015). Science curriculum. notification No.?2015-74. Sejong: Ministry of Education. 

  51. Ministry of Education(MOE). (2022). Science curriculum. notification No.?2022-33. Sejong: Ministry of Education. 

  52. Mulholland, J., & Wallace, J. (2005). Growing the tree of teacher knowledge:?Ten years of learning to teach elementary science. Journal of Research?in Science Teaching, 42(7), 767-790. 

  53. National Research Council. (2012). A framework for K-12 science education:?Practices, crosscutting concepts, and core ideas. Washington, DC:?National Academies Press. 

  54. Nelson, M. M., & Davis, E. A. (2012). Preservice elementary teachers'?evaluations of elementary students' scientific models: an aspect of?pedagogical content knowledge for scientific modeling. International?Journal of Science Education, 34(12), 1931-1959. 

  55. NGSS Lead States (Ed.). (2013). Next generation science standards: For?states, by states. Washington, DC: National Academies Press. 

  56. Nilsson, P., & Loughran, J. (2012). Exploring the development of pre-service?elementary teachers' pedagogical content knowledge. Journal of Science?Teacher Education, 23(7), 699-721. 

  57. Oh, P. (2009). Preservice elementary teachers' perceptions on models used?in science and science education. Journal of Korean Elementary?Science Education, 28(4), 450-466. 

  58. Park, S., & Chen, Y.-C. (2012). Mapping out the integration of the?components of pedagogical content knowledge (PCK): Examples from?high school biology classrooms. Journal of Research in Science?Teaching, 49(7), 922-941. 

  59. Park, S., & Oliver, J. S. (2008a). National Board Certification (NBC) as?a catalyst for teachers' learning about teaching: The effects of the NBC?process on candidate teachers' PCK development. Journal of Research?in Science Teaching, 45(7), 812-834. 

  60. Park, S., & Oliver, J. S. (2008b). Revisiting the conceptualisation of?pedagogical content knowledge (PCK): PCK as a conceptual tool to?understand teachers as professionals. Research in Science Education,?38(3), 261-284. 

  61. Park, Y., Kim, M., & Chang, J. (2018). A study on the development and?applicability of the curriculum literacy protocol for the professional?learning community. Journal of Education & Culture, 24(5), 31-56. 

  62. Rosenkranzer, F., Horsch, C., Schuler, S., & Riess, W. (2017). Student?teachers' pedagogical content knowledge for teaching systems?thinking: Effects of different interventions. International Journal of?Science Education, 1-20. 

  63. Roth, K. J., Garnier, H. E., Chen, C., Lemmens, M., Schwille, K., & Wickler,?N. I. Z. (2011). Videobased lesson analysis: Effective science PD for?teacher and student learning. Journal of Research in Science Teaching,?48(2), 117-148. 

  64. Schwarz, C. V. (2002). Is there a connection? The role of meta-modeling?knowledge in learning with models. In P. Bell, R. Stevens, & T.?Satwicz (Eds.), Keeping learning complex: The Proceedings of the?Fifth International Conference of the Learning Sciences (ICLS).?Mahwah, NJ: Erlbaum. 

  65. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus,?D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning?progression for scientific modeling: Making scientific modeling?accessible and meaningful for learners. Journal of Research in Science?Teaching, 46(6), 632-654. 

  66. Schwarz, C., & Gwekwerere, T. (2007). Using a guided inquiry and modeling?instructional framework to support preservise K-8 science teaching.?Science Education, 91(1), 158-186. 

  67. Settlage, J. (2013). On acknowledging PCK's shortcomings. Journal of?Science Teacher Education, 24(1), 1-12. 

  68. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new?reform. Harvard Educational Review, 57(1), 1-22. 

  69. Stylianidou, F., Boohan, R., & Ogborn, J. (2005). Science teachers'?transformations of the use of computer modeling in the classroom:?Using research to inform training. Science Education, 89(1), 56-70. 

  70. Suk, Y., & Yoon, H. (2022). Analysis of elementary students modeling using?the globe on the cause of seasonal change. Journal of Korean?Elementary Science Education, 41(4), 673-689. 

  71. Uhm, J., & Kim, H. (2020). Changes in teaching practices of elementary?school teachers in scientific modeling classes: Focused on modeling?pedagogical content knowledge (PCK). Journal of the Korean Association?for Science Education, 40(5), 543-563. 

  72. Van Driel, J. H. (2014). Professional learning of science teachers. In C.?Bruguiere, A. Tiberghien, & P. Clement (Eds.), Topics and trends in?current science education (pp. 139-156). Dordrecht: Springer. 

  73. Windschitl M., Thompson J., & Braaten M. (2008). Beyond the scientific?method: Model-Based Inquiry as a new paradigm of preference for?school science investigations. Science Education, 92(5), 941-967. 

  74. Yoon, H. (2011). Pre-service elementary teachers' inquiry on a model of?magnetism and changes in their views of scientific models. Journal?of Korean Elementary Science Education, 30(3), 353-366. 

  75. Yu, H., Ham, D., Cha, H., Kim, M., Kim, H., Yoo, J., Park, H., Kim, C.,?& Choe, S. (2012). Model creation and model developing process of?science gifted students in scientific model constructing class for phase?change of the moon. Journal of Gifted/Talented Education, 22(2),?291-315. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로