$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

리튬이차전지의 과충전에 의한 열폭주 현상의 이해
Understanding Thermal Runaway Phenomena in Overcharged Lithium-Ion Batteries 원문보기

전기화학회지 = Journal of the Korean Electrochemical Society, v.27 no.2, 2024년, pp.55 - 72  

이민서 (공주대학교 화학교육과) ,  유지선 (한국건설기술연구원(KICT) 화재안전연구소) ,  강경신 (한남대학교 토목.건축공학부) ,  이재승 (한남대학교 토목.건축공학부) ,  봉성율 (공주대학교 화학교육과)

초록
AI-Helper 아이콘AI-Helper

이차전지는 우리 생활에 있어 지구온난화에 따른 화석연료의 대체원으로서 전기차에너지저장장치(Energy storage system, ESS) 등 필수불가결한 신재생에너지원으로 활용하고 있다. 그러나, 과방전, 고속충방전, 단락 등 여러 원인에 따른 이차전지 내 열폭주 현상으로 인해 배터리 화재 및 폭발에 대한 사건사례들이 보고되고 있으며, 각각의 원인에 적합한 해결책을 찾기 위해 많은 노력을 기울이고 있다. 특히, 과충전 과정에서 원인으로 추정되는 사례들이 지속적으로 보고되고 있으므로, 본 총설에서는 과충전 과정에서 발생할 수 있는 이차전지의 화학적 반응들을 살펴보고, 이를 점검 및 예방하기 위한 위험조사방법에 대해서 이야기하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Secondary batteries are used as an essential renewable energy source in our lives, such as electric vehicles and energy storage systems (ESS), as an alternative to fossil fuels due to global warming. However, cases of battery fires and explosions have been reported due to thermal runaway in secondar...

주제어

표/그림 (13)

참고문헌 (44)

  1. A. Manthiram, A reflection on lithium-ion battery?cathode chemistry, Nat. Commun., 11, 1550 (2020). 

  2. M. J. Kim and J. H. Ryu, Impact of drying temperature?in high-loading positive electrode fabrication process for?lithium-ion batteries, J. Korean Electrochem. Soc., 27(1),?40-46 (2024). 

  3. T. Kim, W. Song, D.-Y. Son, L. K. Ono, and Y. Qi,?Lithium-ion batteries: outlook on present, future, and?hybridized technologies, J. Mater. Chem. A, 7, 2942-2964 (2019). 

  4. H. S. Jeon and J. H. Ryu, Improved cycle performance?of high-capacity SiOx negative electrodes with carbon?nanotube conducting agents for lithium-ion batteries, J.?Korean Electrochem. Soc., 26(3), 35-41 (2023). 

  5. Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim, J. Wang, J.?Koettgen, Y. Sun, B. Ouyang, T. Chen, Z. Lun, Z. Rong,?K. Persson, and G. Ceder, Promises and challenges of?next-generation "Beyond Li-ion" batteries for electric?vehicles and grid decarbonization, Chem. Rev., 121(3),?1623-1669 (2021). 

  6. Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z.?Liang, X. He, X. Li, N. Tavajohi, and B. Li, A review of?lithium-ion battery safety concerns: The issues, strategies,?and testing standards, J. Energy Chem., 59, 83-99 (2021). 

  7. Tesla fire accident. https://www.tesla-fire.com/ 

  8. D. Ren, X. Feng, L. Liu, H. Hsu, L. Lu, L. Wang, X. He,?and M. Ouyang, Investigating the relationship between?internal short circuit and thermal runaway of lithium-ion?batteries under thermal abuse condition, Energy Storage?Mater., 34, 563-573 (2021). 

  9. L. Li, X. Zhou, X. Ju, Z. Zhou, B. Wang, B. Cao, and L.?Yang, Comprehensive analysis on aging behavior and?safety performance of LiNi x Co y Mn z O 2 /graphite batteries?after slight over-discharge cycle, Appl. Therm. Eng., 225,?120172 (2023). 

  10. G. Zhang, X. Wei, S. Chen, J. Zhu, G. Han, and H. Dai,?Unlocking the thermal safety evolution of lithium-ion?batteries under shallow over-discharge, J. Power Sources,?521, 230990 (2022). 

  11. H. Zhou, C. Fear, J. A. Jeevarajan, and P. P. Mukherjee,?State-of-electrode (SOE) analytics of lithium-ion cells?under overdischarge extremes, Energy Storage Mater.,?54, 60-74 (2023). 

  12. W. Gao, X. Li, M. Ma, Y. Fu, J. Jiang, and C. Mi, Case?study of an electric vehicle battery thermal runaway and?online internal short-circuit detection, IEEE Transactions?on Power Electronics, 36(3), 2452-2455 (2021). 

  13. Z. An, Y. Zhao, X. Du, T. Shi, and D. Zhang,?Experimental research on thermal-electrical behavior and?mechanism during external short circuit for LiFePO 4 Liion battery, Appl. Energy, 332, 120519 (2023). 

  14. T. Dong, P. Peng, and F. Jiang, Numerical modeling and?analysis of the thermal behavior of NCM lithium-ion?batteries subjected to very high C-rate discharge/charge?operations, Int. J. Heat Mass Transf., 117, 261-272?(2018). 

  15. P. Lyu, X. Liu, C. Liu, and Z. Rao, Experimental and?modeling investigation on thermal risk evaluation of tabs?for pouch-type lithium-ion battery and the relevant heat?rejection strategies, Int. J. Heat Mass Transf., 202,?123770 (2023). 

  16. L. Chang, W. Chen, Z. Mao, X. Huang, T. Ren, Y.?Zhang, and Z. Cai, Experimental study on the effect of?ambient temperature and discharge rate on the?temperature field of prismatic batteries, J. Energy?Storage, 59, 106577 (2023). 

  17. N. Mao, T. Zhang, Z. Wang, and Q. Cai, A systematic?investigation of internal physical and chemical changes?of lithium-ion batteries during overcharge, J. Power?Sources, 518, 230767 (2022). 

  18. X. Hu, F. Gao, Y. Xiao, D. Wang, Z. Gao, Z. Hunag, S.?Ren, N. Jiang, and S. Wu, Advancements in the safety of?lithium-ion battery: The trigger, consequence and?mitigation method of thermal runaway, Chem. Eng. J.,?481, 148450 (2024). 

  19. Z. Wang, T. He, H. Bian, F. Jiang, and Y. Yang,?Characteristics of and factors influencing thermal?runaway propagation in lithium-ion battery packs, J.?Energy Storage, 41, 102956 (2021). 

  20. Q. Yuan, F. Zhao, W. Wang, Y. Zhao, Z. Liang, and D.?Yan, Overcharge failure investigation of lithium-ion?batteries, Electrochim. Acta, 178, 682-688 (2015). 

  21. Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen,?Thermal runaway caused fire and explosion of lithium?ion battery, J. Power Sources, 208, 210-224 (2012). 

  22. R. Spotnitz and J. Franklin, Abuse behavior of high-power, lithium-ion cells, J. Power Sources, 113(1), 81-100 (2003). 

  23. Z. Wang, J. Yuan, X. Zhu, H. Wang, L. Huang, Y. Wang,?and S. Xu, Overcharge-to-thermal-runaway behavior and?safety assessment of commercial lithium-ion cells with?different cathode materials: A comparison study, J.?Energy Chem., 55, 484-498 (2021). 

  24. W. Kong, H. Li, X. Huang, and L. Chen, Gas evolution?behaviors for several cathode materials in lithium-ion?batteries, J. Power Sources, 142(1-2), 285-291 (2005). 

  25. N. Thaweelap and R. Utke, Dehydrogenation kinetics?and reversibility of LiAlH 4 -LiBH 4 doped with Ti-based?additives and MWCNT, J. Phys. Chem. Solids, 98, 149-155 (2016). 

  26. C. Maupoix, J. L. Houzelot, E. Sciora, G. Gaillard, S.?Charton, L. Saviot, and F. Bernard, Experimental?investigation of the grain size dependence of the?hydrolysis of LiH powder, Powder Technol., 208(2),?318-323 (2011). 

  27. O. Dolotko, N. Gehrke, T. Malliaridou, R. Sieweck, L.?Herrmann, B. Hunzinger, M. Knapp, and H. Ehrenberg,?Universal and efficient extraction of lithium for lithium-ion battery recycling using mechanochemistry, Commun.?Chem., 6, 49 (2023). 

  28. M. Kim, J. Jeon, and J. Hong, Reaction mechanism study?and modeling of thermal runaway inside a high nickel-based lithium-ion battery through component?combination analysis, Chem. Eng. J., 471, 144434?(2023). 

  29. S. Shahid and M. Agelin-Chaab, A review of thermal?runaway prevention and mitigation strategies for lithium-ion batteries, Energy Convers. Manag. X, 16, 100310?(2022). 

  30. UL LLC, Safety issues for lithium-ion batteries. https://code-authorities.ul.com/wp-content/uploads/2016/02/Safety_Issues_for_Lithium_Ion_Batteries1.pdf 

  31. A. Kriston, I. Adanouj, V. Ruiz, and A. Pfrang,?Quantification and simulation of thermal decomposition?reactions of Li-ion battery materials by simultaneous?thermal analysis coupled with gas analysis, J. Power?Sources, 435, 226774 (2019). 

  32. H. Zhou, M. Parmananda, K. R. Crompton, M. P.?Hladky, M. A. Dann, J. K. Ostanek, and P. P. Mukherjee,?Effect of electrode crosstalk on heat release in lithium-ion batteries under thermal abuse scenarios, Energy?Storage Mater., 44, 326-341 (2022). 

  33. W. Qingsong, S. Jinhua, and C. Chunhuu, Thermal?stability of LiPF6/EC + DMC + EMC electrolyte for?lithium ion batteries, Rare Metals, 25(6), 94-99 (2006). 

  34. J. Zhang, Q. Kong, Z. Liu, S. Pang, L. Yue, J. Yao, X.?Wang, and G. Cui, A highly safe and inflame retarding?aramid lithium ion battery separator by a papermaking?process, Solid State Ion., 245-246, 49-55 (2013). 

  35. C. T. Love, Thermomechanical analysis and durability of?commercial micro-porous polymer Li-ion battery?separators, J. Power Sources, 196(5), 2905-2912 (2011). 

  36. S.-M. Bak, K.-W. Nam, W. Chang, X. Yu, E. Hu, S.?Hwang, E. A. Stach, K.-B. Kim, K. Y. Chung, and X.-Q.?Yang, Correlating structural changes and gas evolution?during the thermal decomposition of charged?Li x Ni 0.8 Co 0.15 Al 0.05 O 2 Cathode Materials, Chem. Mater.,?25(3), 337-351 (2013). 

  37. Q. Wang, J. Sun, X. Yao, and C. Chen, Thermal behavior?of lithiated graphite with electrolyte in lithium-ion?batteries, J. Electrochem. Soc., 153, A329 (2006). 

  38. X. Liu, L. Yin, D. Ren, L. Wang, Y. Ren, W. Xu, S.?Lapidus, H. Wang, X. He, Z. Chen, G.-L. Xu, M.?Ouyang, and K. Amine, In situ observation of thermal-driven degradation and safety concerns of lithiated?graphite anode, Nat. Commun., 12, 4235 (2021). 

  39. M. N. Richard and J. R. Dahn, Accelerating rate?calorimetry study on the thermal stability of lithium?intercalated graphite in electrolyte, J. Electrochem. Soc.,?146, 2068 (1999). 

  40. H. Yang and X.-D. Shen, Dynamic TGA-FTIR studies?on the thermal stability of lithium/graphite with?electrolyte in lithium-ion cell, J. Power Sources, 167(2),?515-519 (2007). 

  41. B. S. Parimalam, A. D. MacIntosh, R. Kadam, and B. L.?Lucht, Decomposition reactions of anode solid?electrolyte interphase (SEI) components with LiPF 6 , J.?Phys. Chem. C, 121(41), 22733-22738 (2017). 

  42. A. T. S. Freiberg, J. Sicklinger, S. Solchenbach, and H.?A. Gasteiger, Li 2 CO 3 decomposition in Li-ion batteries?induced by the electrochemical oxidation of the?electrolyte and of electrolyte impurities, Electrochim.?Acta, 346, 136271 (2020). 

  43. E. W. C. Spotte-Smith, T. B. Petrocelli, H. D. Patel, S.?M. Blau, and K. A. Persson, Elementary decomposition?mechanisms of lithium hexafluorophosphate in battery?electrolytes and interphases, ACS Energy Lett., 8(1), 347-355 (2023). 

  44. Z. Liao, S. Zhang, K. Li, M. Zhao, Z. Qiu, D. Han, G.?Zhang, and T. G. Habetler, Hazard analysis of thermally?abused lithium-ion batteries at different state of charges,?J. Energy Storage, 27, 101065 (2020) 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로