$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Lithium-Air Batteries: Air-Breathing Challenges and Perspective

ACS nano, v.14 no.11, 2020년, pp.14549 - 14578  

Kang, Jin-Hyuk (Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea) ,  Lee, Jiyoung (Department of Materials Science and Engineering , KAIST , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea) ,  Jung, Ji-Won (Department of Materials Science and Engineering , KAIST , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea) ,  Park, Jiwon (Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea) ,  Jang, Taegyu (Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea) ,  Kim, Hyun-Soo (Department of Chemical and Biological Engineering , Sookmyung Women’s University , 100 Cheongpa-ro 47-gil , Yon) ,  Nam, Jong-Seok ,  Lim, Haeseong ,  Yoon, Ki Ro ,  Ryu, Won-Hee ,  Kim, Il-Doo ,  Byon, Hye Ryung

Abstract AI-Helper 아이콘AI-Helper

Lithium-oxygen (Li-O2) batteries have been intensively investigated in recent decades for their utilization in electric vehicles. The intrinsic challenges arising from O2 (electro)chemistry have been mitigated by developing various types of catalysts, porous electrode materials, and stable electroly...

Keyword

참고문헌 (215)

  1. Bruce, Peter G., Freunberger, Stefan A., Hardwick, Laurence J., Tarascon, Jean-Marie. Li??O2 and Li??S batteries with high energy storage. Nature materials, vol.11, no.1, 19-29.

  2. Wong, Raymond A., Yang, Chunzhen, Dutta, Arghya, O, Minho, Hong, Misun, Thomas, Morgan L., Yamanaka, Keisuke, Ohta, Toshiaki, Waki, Keiko, Byon, Hye Ryung. Critically Examining the Role of Nanocatalysts in Li-O2 Batteries: Viability toward Suppression of Recharge Overpotential, Rechargeability, and Cyclability. ACS energy letters, vol.3, no.3, 592-597.

  3. McCloskey, Bryan D., Scheffler, Rouven, Speidel, Angela, Girishkumar, Girish, Luntz, Alan C.. On the Mechanism of Nonaqueous Li–O2 Electrochemistry on C and Its Kinetic Overpotentials: Some Implications for Li–Air Batteries. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.116, no.45, 23897-23905.

  4. Zhai, Dengyun, Wang, Hsien-Hau, Yang, Junbing, Lau, Kah Chun, Li, Kaixi, Amine, Khalil, Curtiss, Larry A.. Disproportionation in Li–O2 Batteries Based on a Large Surface Area Carbon Cathode. Journal of the American Chemical Society, vol.135, no.41, 15364-15372.

  5. Christy, Maria, Arul, Anupriya, Zahoor, Awan, Moon, Kwang Uk, Oh, Mi Young, Stephan, A. Manuel, Nahm, Kee Suk. Role of solvents on the oxygen reduction and evolution of rechargeable Li-O2 battery. Journal of power sources, vol.342, 825-835.

  6. Chen, Jingwen, Chen, Chunguang, Huang, Tao, Yu, Aishui. LiTFSI Concentration Optimization in TEGDME Solvent for Lithium-Oxygen Batteries. ACS omega, vol.4, no.24, 20708-20714.

  7. Elia, G. A., Hassoun, J., Kwak, W.-J., Sun, Y.-K., Scrosati, B., Mueller, F., Bresser, D., Passerini, S., Oberhumer, P., Tsiouvaras, N., Reiter, J.. An Advanced Lithium–Air Battery Exploiting an Ionic Liquid-Based Electrolyte. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.14, no.11, 6572-6577.

  8. Radin, Maxwell D., Tian, Feng, Siegel, Donald J.. Electronic structure of Li2O2 {0001} surfaces. Journal of materials science, vol.47, no.21, 7564-7570.

  9. Viswanathan, V., Thygesen, K. S., Hummelshøj, J. S., Nørskov, J. K., Girishkumar, G., McCloskey, B. D., Luntz, A. C.. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. The Journal of chemical physics, vol.135, no.21, 214704-.

  10. Hummelshøj, J. S., Blomqvist, J., Datta, S., Vegge, T., Rossmeisl, J., Thygesen, K. S., Luntz, A. C., Jacobsen, K. W., Nørskov, J. K.. Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery. The Journal of chemical physics, vol.132, no.7, 071101-.

  11. Zhang, Xin, Zhang, Qinming, Wang, Xin‐Gai, Wang, Chengyi, Chen, Ya‐Nan, Xie, Zhaojun, Zhou, Zhen. An Extremely Simple Method for Protecting Lithium Anodes in Li‐O2 Batteries. Angewandte Chemie. international edition, vol.57, no.39, 12814-12818.

  12. Gittleson, Forrest S., Yao, Koffi P. C., Kwabi, David G., Sayed, Sayed Youssef, Ryu, Won‐Hee, Shao‐Horn, Yang, Taylor, André D.. Raman Spectroscopy in Lithium-Oxygen Battery Systems. ChemElectroChem, vol.2, no.10, 1446-1457.

  13. Mahne, Nika, Schafzahl, Bettina, Leypold, Christian, Leypold, Mario, Grumm, Sandra, Leitgeb, Anita, Strohmeier, Gernot A., Wilkening, Martin, Fontaine, Olivier, Kramer, Denis, Slugovc, Christian, Borisov, Sergey M., Freunberger, Stefan A.. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nature energy, vol.2, no.5, 17036-.

  14. Mahne, Nika, Renfrew, Sara E., McCloskey, Bryan D., Freunberger, Stefan A.. Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen. Angewandte Chemie. international edition, vol.57, no.19, 5529-5533.

  15. Kim, Hyunjin, Lee, Hyunpyo, Kim, Mokwon, Bae, Youngjoon, Baek, Woonjoong, Park, Kwangjin, Park, Seongyong, Kim, Taeyoung, Kwon, Hyukjae, Choi, Wonsung, Kang, Kisuk, Kwon, Soonchul, Im, Dongmin. Flexible free-standing air electrode with bimodal pore architecture for long-cycling Li-O2 batteries. Carbon, vol.117, 454-461.

  16. Shui, Jiang-Lan, Okasinski, John S., Kenesei, Peter, Dobbs, Howard A., Zhao, Dan, Almer, Jonathan D., Liu, Di-Jia. Reversibility of anodic lithium in rechargeable lithium–oxygen batteries. Nature communications, vol.4, 2255-.

  17. Cho, M.H., Trottier, J., Gagnon, C., Hovington, P., Clement, D., Vijh, A., Kim, C.S., Guerfi, A., Black, R., Nazar, L., Zaghib, K.. The effects of moisture contamination in the Li-O2 battery. Journal of power sources, vol.268, 565-574.

  18. Yang, Xin-hui, Xia, Yong-yao. The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery. Journal of solid state electrochemistry : current research and development in science and technology, vol.14, no.1, 109-114.

  19. Kwon, Hyuk Jae, Lee, Heung Chan, Ko, Jeongsik, Jung, In Sun, Lee, Hyun Chul, Lee, Hyunpyo, Kim, Mokwon, Lee, Dong Joon, Kim, Hyunjin, Kim, Tae Young, Im, Dongmin. Effects of oxygen partial pressure on Li-air battery performance. Journal of power sources, vol.364, 280-287.

  20. Huang, Shiting, Cui, Zhonghui, Zhao, Ning, Sun, Jiyang, Guo, Xiangxin. Influence of Ambient Air on Cell Reactions of Li-air Batteries. Electrochimica acta, vol.191, 473-478.

  21. Kitaura, Hirokazu, Zhou, Haoshen. Electrochemical Performance of Solid‐State Lithium-Air Batteries Using Carbon Nanotube Catalyst in the Air Electrode. Advanced energy materials, vol.2, no.7, 889-894.

  22. Garcia-Lastra, J. M., Myrdal, J. S. G., Christensen, R., Thygesen, K. S., Vegge, T.. DFT+U Study of Polaronic Conduction in Li2O2 and Li2CO3: Implications for Li–Air Batteries. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.117, no.11, 5568-5577.

  23. Xie, Meilan, Huang, Zhimei, Lin, Xing, Li, Yankai, Huang, Zhaoming, Yuan, Lixia, Shen, Yue, Huang, Yunhui. Oxygen selective membrane based on perfluoropolyether for Li-Air battery with long cycle life. Energy storage materials, vol.20, 307-314.

  24. Wang, Lie, Pan, Jian, Zhang, Ye, Cheng, Xunliang, Liu, Lianmei, Peng, Huisheng. A Li–Air Battery with Ultralong Cycle Life in Ambient Air. Advanced materials, vol.30, no.3, 1704378-.

  25. Cao, Lujie, Lv, Fucong, Liu, Ying, Wang, Wenxi, Huo, Yifeng, Fu, Xianzhu, Sun, Rong, Lu, Zhouguang. A high performance O2 selective membrane based on CAU-1-NH2@polydopamine and the PMMA polymer for Li–air batteries. Chemical communications : Chem comm, vol.51, no.21, 4364-4367.

  26. Laoire, Cormac O., Mukerjee, Sanjeev, Abraham, K. M.. Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.114, no.19, 9178-9186.

  27. Torres, Ana E., Balbuena, Perla B.. Exploring the LiOH Formation Reaction Mechanism in Lithium–Air Batteries. Chemistry of materials : a publication of the American Chemical Society, vol.30, no.3, 708-717.

  28. Liu, Ying, Wang, Liping, Cao, Lujie, Shang, Chaoqun, Wang, Zhenyu, Wang, Hongen, He, Liqing, Yang, Jingyi, Cheng, Hua, Li, Jingze, Lu, Zhouguang. Understanding and suppressing side reactions in Li-air batteries. Materials chemistry frontiers, vol.1, no.12, 2495-2510.

  29. Wu, M., Wen, Z., Liu, Y., Wang, X., Huang, L.. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. Journal of power sources, vol.196, no.19, 8091-8097.

  30. Wang, H., Zhang, W.D., Deng, Z.Q., Chen, M.C.. Interaction of nitrogen with lithium in lithium ion batteries. Solid state ionics, vol.180, no.2, 212-215.

  31. Liu, Tao, Liu, Zigeng, Kim, Gunwoo, Frith, James T., Garcia‐Araez, Nuria, Grey, Clare P.. Understanding LiOH Chemistry in a Ruthenium‐Catalyzed Li–O 2 Battery. Angewandte Chemie. international edition, vol.56, no.50, 16057-16062.

  32. Zhang, Xiahui, Dong, Panpan, Lee, Jung-In, Gray, Jake T., Cha, Young-Hwan, Ha, Su, Song, Min-Kyu. Enhanced cycling performance of rechargeable Li-O2 batteries via LiOH formation and decomposition using high-performance MOF-74@CNTs hybrid catalysts. Energy storage materials, vol.17, 167-177.

  33. Liu, Tao, Leskes, Michal, Yu, Wanjing, Moore, Amy J., Zhou, Lina, Bayley, Paul M., Kim, Gunwoo, Grey, Clare P.. Cycling Li-O2 batteries via LiOH formation and decomposition. Science, vol.350, no.6260, 530-533.

  34. Takechi, Kensuke, Shiga, Tohru, Asaoka, Takahiko. A Li–O2/CO2 battery. Chemical communications : Chem comm, vol.47, no.12, 3463-3465.

  35. Gowda, S. R., Brunet, A., Wallraff, G. M., McCloskey, B. D.. Implications of CO2 Contamination in Rechargeable Nonaqueous Li–O2 Batteries. The journal of physical chemistry letters, vol.4, no.2, 276-279.

  36. Zhang, Xin, Wang, Chengyi, Li, Huanhuan, Wang, Xin-Gai, Chen, Ya-Nan, Xie, Zhaojun, Zhou, Zhen. High performance Li-CO2 batteries with NiO-CNT cathodes. Journal of materials chemistry. A, Materials for energy and sustainability, vol.6, no.6, 2792-2796.

  37. Wang, R., Yu, X., Bai, J., Li, H., Huang, X., Chen, L., Yang, X.. Electrochemical decomposition of Li2CO3 in NiO-Li2CO3 nanocomposite thin film and powder electrodes. Journal of power sources, vol.218, 113-118.

  38. Mao, Yangjun, Tang, Cong, Tang, Zhichu, Xie, Jian, Chen, Zhen, Tu, Jian, Cao, Gaoshao, Zhao, Xinbing. Long-life Li-CO2 cells with ultrafine IrO2-decorated few-layered δ-MnO2 enabling amorphous Li2CO3 growth. Energy storage materials, vol.18, 405-413.

  39. Hou, Yuyang, Wang, Jiazhao, Liu, Lili, Liu, Yuqing, Chou, Shulei, Shi, Dongqi, Liu, Huakun, Wu, Yuping, Zhang, Weimin, Chen, Jun. Mo2C/CNT: An Efficient Catalyst for Rechargeable Li–CO2 Batteries. Advanced functional materials, vol.27, no.27, 1700564-.

  40. Yang, Sixie, Qiao, Yu, He, Ping, Liu, Yijie, Cheng, Zhu, Zhu, Jun-jie, Zhou, Haoshen. A reversible lithium-CO2 battery with Ru nanoparticles as a cathode catalyst. Energy & environmental science, vol.10, no.4, 972-978.

  41. Harding, Jonathon R., Amanchukwu, Chibueze V., Hammond, Paula T., Shao-Horn, Yang. Instability of Poly(ethylene oxide) upon Oxidation in Lithium–Air Batteries. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.119, no.13, 6947-6955.

  42. Yao, Xiahui, Dong, Qi, Cheng, Qingmei, Wang, Dunwei. Why Do Lithium–Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect. Angewandte Chemie. international edition, vol.55, no.38, 11344-11353.

  43. Meini, Stefano, Tsiouvaras, Nikolaos, Schwenke, K. Uta, Piana, Michele, Beyer, Hans, Lange, Lukas, Gasteiger, Hubert A.. Rechargeability of Li–air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li–air cells. Physical chemistry chemical physics : PCCP, vol.15, no.27, 11478-11493.

  44. Meini, Stefano, Piana, Michele, Tsiouvaras, Nikolaos, Garsuch, Arnd, Gasteiger, Hubert A.. The Effect of Water on the Discharge Capacity of a Non-Catalyzed Carbon Cathode for Li-O2 Batteries. Electrochemical and solid-state letters, vol.15, no.4, A45-.

  45. Aetukuri, Nagaphani B., McCloskey, Bryan D., García, Jeannette M., Krupp, Leslie E., Viswanathan, Venkatasubramanian, Luntz, Alan C.. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nature chemistry, vol.7, no.1, 50-56.

  46. Wong, Raymond A., Dutta, Arghya, Yang, Chunzhen, Yamanaka, Keisuke, Ohta, Toshiaki, Nakao, Aiko, Waki, Keiko, Byon, Hye Ryung. Structurally Tuning Li2O2 by Controlling the Surface Properties of Carbon Electrodes: Implications for Li–O2 Batteries. Chemistry of materials : a publication of the American Chemical Society, vol.28, no.21, 8006-8015.

  47. Khetan, Abhishek, Arjmandi, Hamid R., Pande, Vikram, Pitsch, Heinz, Viswanathan, Venkatasubramanian. Understanding Ion Pairing in High-Salt Concentration Electrolytes Using Classical Molecular Dynamics Simulations and Its Implications for Nonaqueous Li-O2 Batteries. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.122, no.15, 8094-8101.

  48. Johnson, Lee, Li, Chunmei, Liu, Zheng, Chen, Yuhui, Freunberger, Stefan A., Ashok, Praveen C., Praveen, Bavishna B., Dholakia, Kishan, Tarascon, Jean-Marie, Bruce, Peter G.. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nature chemistry, vol.6, no.12, 1091-1099.

  49. Qiao, Yu, Wu, Shichao, Yi, Jin, Sun, Yang, Guo, Shaohua, Yang, Sixie, He, Ping, Zhou, Haoshen. From O2 to HO2: Reducing By‐Products and Overpotential in Li‐O2 Batteries by Water Addition. Angewandte Chemie. international edition, vol.56, no.18, 4960-4964.

  50. Kwabi, David G., Batcho, Thomas P., Feng, Shuting, Giordano, Livia, Thompson, Carl V., Shao-Horn, Yang. The effect of water on discharge product growth and chemistry in Li–O2 batteries. Physical chemistry chemical physics : PCCP, vol.18, no.36, 24944-24953.

  51. Schwenke, K. Uta, Metzger, Michael, Restle, Tassilo, Piana, Michele, Gasteiger, Hubert A.. The Influence of Water and Protons on Li2O2 Crystal Growth in Aprotic Li-O2 Cells. Journal of the Electrochemical Society : JES, vol.162, no.4, A573-A584.

  52. Liu, Tao, Vivek, J. Padmanabhan, Zhao, Evan Wenbo, Lei, Jiang, Garcia-Araez, Nuria, Grey, Clare P.. Current Challenges and Routes Forward for Nonaqueous Lithium-Air Batteries. Chemical reviews, vol.120, no.14, 6558-6625.

  53. Guo, Z., Dong, X., Yuan, S., Wang, Y., Xia, Y.. Humidity effect on electrochemical performance of Li-O2 batteries. Journal of power sources, vol.264, 1-7.

  54. Wu, Shichao, Tang, Jing, Li, Fujun, Liu, Xizheng, Zhou, Haoshen. Low charge overpotentials in lithium–oxygen batteries based on tetraglyme electrolytes with a limited amount of water. Chemical communications : Chem comm, vol.51, no.94, 16860-16863.

  55. Tan, P., Shyy, W., Zhao, T.S., Zhang, R.H., Zhu, X.B.. Effects of moist air on the cycling performance of non-aqueous lithium-air batteries. Applied energy, vol.182, 569-575.

  56. Lim, Hyung-Kyu, Lim, Hee-Dae, Park, Kyu-Young, Seo, Dong-Hwa, Gwon, Hyeokjo, Hong, Jihyun, Goddard, William A., Kim, Hyungjun, Kang, Kisuk. Toward a Lithium–“Air” Battery: The Effect of CO2 on the Chemistry of a Lithium–Oxygen Cell. Journal of the American Chemical Society, vol.135, no.26, 9733-9742.

  57. McCloskey, B. D., Speidel, A., Scheffler, R., Miller, D. C., Viswanathan, V., Hummelshøj, J. S., Nørskov, J. K., Luntz, A. C.. Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O2 Batteries. The journal of physical chemistry letters, vol.3, no.8, 997-1001.

  58. Chen, Li-Bin, Hong, Yu-Hao, Xiao, Liang-Ping, You, Jin-Hai, Sheng, Wen-Jia, Huang, Ling, Bai, Hua, Sun, Shi-Gang. Effects of CO2 accumulation during cycling of a Li–O2 battery on the transition of discharge product and performance fading. Nano energy, vol.66, 104171-.

  59. Marques Mota, Filipe, Kang, Jin‐Hyuk, Jung, Younguk, Park, Jiwon, Na, Moony, Kim, Dong Ha, Byon, Hye Ryung. Mechanistic Study Revealing the Role of the Br3/Br2 Redox Couple in CO2‐Assisted Li-O2 Batteries. Advanced energy materials, vol.10, no.9, 1903486-.

  60. Qiao, Yu, Yi, Jin, Guo, Shaohua, Sun, Yang, Wu, Shichao, Liu, Xizheng, Yang, Sixie, He, Ping, Zhou, Haoshen. Li2CO3-free Li-O2/CO2 battery with peroxide discharge product. Energy & environmental science, vol.11, no.5, 1211-1217.

  61. Yin, Wei, Grimaud, Alexis, Lepoivre, Florent, Yang, Chunzhen, Tarascon, Jean Marie. Chemical vs Electrochemical Formation of Li2CO3 as a Discharge Product in Li–O2/CO2 Batteries by Controlling the Superoxide Intermediate. The journal of physical chemistry letters, vol.8, no.1, 214-222.

  62. Zhao, Zhiwei, Su, Yuwei, Peng, Zhangquan. Probing Lithium Carbonate Formation in Trace-O2-Assisted Aprotic Li-CO2 Batteries Using in Situ Surface-Enhanced Raman Spectroscopy. The journal of physical chemistry letters, vol.10, no.3, 322-328.

  63. Burke, Colin M., Pande, Vikram, Khetan, Abhishek, Viswanathan, Venkatasubramanian, McCloskey, Bryan D.. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity. Proceedings of the National Academy of Sciences of the United States of America, vol.112, no.30, 9293-9298.

  64. Mozhzhukhina, Nataliia, Méndez De Leo, Lucila P., Calvo, Ernesto Julio. Infrared Spectroscopy Studies on Stability of Dimethyl Sulfoxide for Application in a Li–Air Battery. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.117, no.36, 18375-18380.

  65. Jones, D. Philip, Griffith, William P.. Alkali-metal peroxocarbonates, M2[CO3nH2O2, M2[C2O6], M[HCO4nH2O, and Li2[CO4]·H2O. Journal of the Chemical Society. Dalton transactions, vol.1980, no.12, 2526-2532.

  66. Nam, S. C., Yoon, Y. S., Cho, W. I., Cho, B. W., Chun, H. S., Yun, K. S.. Reduction of Irreversibility in the First Charge of Tin Oxide Thin Film Negative Electrodes. Journal of the Electrochemical Society : JES, vol.148, no.3, A220-.

  67. Li, Yuzhang, Li, Yanbin, Sun, Yongming, Butz, Benjamin, Yan, Kai, Koh, Ai Leen, Zhao, Jie, Pei, Allen, Cui, Yi. Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.17, no.8, 5171-5178.

  68. 10.2172/6885395 Jeppson, D. W.; Ballif, J. L.; Yuan, W W.; Chou, B. E. Lithium Literature Review: Lithium’s Properties and Interactions. Lithium Literature Review: Lithium’s Properties and Interactions , 1978; https://www.osti.gov/servlets/purl/6885395. 

  69. Markowitz, M. M., Boryta, D. A.. Lithium Metal-Gas Reactions.. Journal of chemical and engineering data, vol.7, no.4, 586-591.

  70. Alpen, U.v.. Li3N: A promising Li ionic conductor. Journal of solid state chemistry, vol.29, no.3, 379-392.

  71. Li, Yanbin, Sun, Yongming, Pei, Allen, Chen, Kaifeng, Vailionis, Arturas, Li, Yuzhang, Zheng, Guangyuan, Sun, Jie, Cui, Yi. Robust Pinhole-free Li 3 N Solid Electrolyte Grown from Molten Lithium. ACS central science, vol.4, no.1, 97-104.

  72. Zhu, Yizhou, He, Xingfeng, Mo, Yifei. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS applied materials & interfaces, vol.7, no.42, 23685-23693.

  73. Chen, Yuhui, Freunberger, Stefan A., Peng, Zhangquan, Fontaine, Olivier, Bruce, Peter G.. Charging a Li–O2 battery using a redox mediator. Nature chemistry, vol.5, no.6, 489-494.

  74. Sun, Dan, Shen, Yue, Zhang, Wang, Yu, Ling, Yi, Ziqi, Yin, Wei, Wang, Duo, Huang, Yunhui, Wang, Jie, Wang, Deli, Goodenough, John B.. A Solution-Phase Bifunctional Catalyst for Lithium–Oxygen Batteries. Journal of the American Chemical Society, vol.136, no.25, 8941-8946.

  75. Yang, L., Frith, J. T., Garcia-Araez, N., Owen, J. R.. A new method to prevent degradation of lithium–oxygen batteries: reduction of superoxide by viologen. Chemical communications : Chem comm, vol.51, no.9, 1705-1708.

  76. Togasaki, Norihiro, Shibamura, Ryuji, Naruse, Takuya, Momma, Toshiyuki, Osaka, Tetsuya. Prevention of redox shuttle using electropolymerized polypyrrole film in a lithium-oxygen battery. APL materials, vol.6, no.4, 047704-.

  77. Vivek, J. Padmanabhan, Homewood, Tom, Garcia-Araez, Nuria. An Unsuitable Li-O2 Battery Electrolyte Made Suitable with the Use of Redox Mediators. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.123, no.33, 20241-20250.

  78. Gao, Xiangwen, Chen, Yuhui, Johnson, Lee, Bruce, Peter G.. Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions. Nature materials, vol.15, no.8, 882-888.

  79. Ottakam Thotiyl, Muhammed M., Freunberger, Stefan A., Peng, Zhangquan, Bruce, Peter G.. The Carbon Electrode in Nonaqueous Li–O2 Cells. Journal of the American Chemical Society, vol.135, no.1, 494-500.

  80. Ko, Youngmin, Park, Hyeokjun, Kim, Jinsoo, Lim, Hee‐Dae, Lee, Byungju, Kwon, Giyun, Lee, Sechan, Bae, Youngjoon, Park, Sung Kwan, Kang, Kisuk. Biological Redox Mediation in Electron Transport Chain of Bacteria for Oxygen Reduction Reaction Catalysts in Lithium–Oxygen Batteries. Advanced functional materials, vol.29, no.5, 1805623-.

  81. Lai, Jingning, Xing, Yi, Chen, Nan, Li, Li, Wu, Feng, Chen, Renjie. Electrolytes for Rechargeable Lithium–Air Batteries. Angewandte Chemie. international edition, vol.59, no.8, 2974-2997.

  82. Feng, Ningning, He, Ping, Zhou, Haoshen. Enabling Catalytic Oxidation of Li2O2 at the Liquid-Solid Interface: The Evolution of an Aprotic Li-O2 Battery. ChemSusChem, vol.8, no.4, 600-602.

  83. Liu, Xiao, Zhang, Peng, Liu, Liangliang, Feng, Jianwen, He, Xiaofeng, Song, Xiaosheng, Han, Qing, Wang, Hua, Peng, Zhangquan, Zhao, Yong. Inhibition of Discharge Side Reactions by Promoting Solution-Mediated Oxygen Reduction Reaction with Stable Quinone in Li-O2 Batteries. ACS applied materials & interfaces, vol.12, no.9, 10607-10615.

  84. Tkacheva, Anastasiia, Zhang, Jinqiang, Sun, Bing, Zhou, Dong, Wang, Guoxiu, McDonagh, Andrew M.. TEMPO-Ionic Liquids as Redox Mediators and Solvents for Li-O2 Batteries. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.124, no.9, 5087-5092.

  85. Bergner, Benjamin J., Schürmann, Adrian, Peppler, Klaus, Garsuch, Arnd, Janek, Jürgen. TEMPO: A Mobile Catalyst for Rechargeable Li-O2 Batteries. Journal of the American Chemical Society, vol.136, no.42, 15054-15064.

  86. Dou, Yaying, Lian, Ruqian, Chen, Gang, Wei, Yingjin, Peng, Zhangquan. Identification of a better charge redox mediator for lithium-oxygen batteries. Energy storage materials, vol.25, 795-800.

  87. Yang, Chuchu, Han, Jiuhui, Liu, Pan, Hou, Chen, Huang, Gang, Fujita, Takeshi, Hirata, Akihiko, Chen, Mingwei. Direct Observations of the Formation and Redox‐Mediator‐Assisted Decomposition of Li2O2 in a Liquid‐Cell Li–O2 Microbattery by Scanning Transmission Electron Microscopy. Advanced materials, vol.29, no.41, 1702752-.

  88. Qiao, Yu, Ye, Shen. Spectroscopic Investigation for Oxygen Reduction and Evolution Reactions with Tetrathiafulvalene as a Redox Mediator in Li–O2 Battery. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.120, no.29, 15830-15845.

  89. nstitute of Advanced Aerospace Technology, Seoul National University, Seoul 151‐742 (Republic of Korea), Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083‐0688 (USA), Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083‐0688 (USA), Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083‐0688 (USA). Superior Rechargeability and Efficiency of Lithium–Oxygen Batteries: Hierarchical Air Electrode Architecture Combined with a Soluble Catalyst. Angewandte Chemie. international edition, vol.53, no.15, 3926-3931.

  90. Yu, Mingzhe, Ren, Xiaodi, Ma, Lu, Wu, Yiying. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium–oxygen battery for photoassisted charging. Nature communications, vol.5, 5111-.

  91. Wang, Meiling, Yao, Ying, Bi, Xuanxuan, Zhao, Tuo, Zhang, Guanzhong, Wu, Feng, Amine, Khalil, Lu, Jun. Optimization of oxygen electrode combined with soluble catalyst to enhance the performance of lithium-oxygen battery. Energy storage materials, vol.28, 73-81.

  92. Jung, Ji-Won, Cho, Su-Ho, Nam, Jong Seok, Kim, Il-Doo. Current and future cathode materials for non-aqueous Li-air (O2) battery technology - A focused review. Energy storage materials, vol.24, 512-528.

  93. Lim, Hee-Dae, Lee, Byungju, Zheng, Yongping, Hong, Jihyun, Kim, Jinsoo, Gwon, Hyeokjo, Ko, Youngmin, Lee, Minah, Cho, Kyeongjae, Kang, Kisuk. Rational design of redox mediators for advanced Li–O2 batteries. Nature energy, vol.1, 16066-.

  94. Kwak, Won-Jin, Hirshberg, Daniel, Sharon, Daniel, Shin, Hyeon-Ji, Afri, Michal, Park, Jin-Bum, Garsuch, Arnd, Chesneau, Frederick Francois, Frimer, Aryeh A., Aurbach, Doron, Sun, Yang-Kook. Understanding the behavior of Li-oxygen cells containing LiI. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.16, 8855-8864.

  95. Kwak, Won-Jin, Hirshberg, Daniel, Sharon, Daniel, Afri, Michal, Frimer, Aryeh A., Jung, Hun-Gi, Aurbach, Doron, Sun, Yang-Kook. Li–O2 cells with LiBr as an electrolyte and a redox mediator. Energy & environmental science, vol.9, no.7, 2334-2345.

  96. Sharon, Daniel, Hirsberg, Daniel, Afri, Michal, Chesneau, Frederick, Lavi, Ronit, Frimer, Aryeh A., Sun, Yang-Kook, Aurbach, Doron. Catalytic Behavior of Lithium Nitrate in Li-O2 Cells. ACS applied materials & interfaces, vol.7, no.30, 16590-16600.

  97. Lee, Seon Hwa, Park, Jin‐Bum, Lim, Hyung‐Seok, Sun, Yang‐Kook. An Advanced Separator for Li-O2 Batteries: Maximizing the Effect of Redox Mediators. Advanced energy materials, vol.7, no.18, 1602417-.

  98. Park, Jin‐Bum, Lee, Seon Hwa, Jung, Hun‐Gi, Aurbach, Doron, Sun, Yang‐Kook. Redox Mediators for Li–O2 Batteries: Status and Perspectives. Advanced materials, vol.30, no.1, 1704162-.

  99. Ryu, Won-Hee, Gittleson, Forrest S., Thomsen, Julianne M., Li, Jinyang, Schwab, Mark J., Brudvig, Gary W., Taylor, André D.. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries. Nature communications, vol.7, 12925-.

  100. Liang, Zhuojian, Lu, Yi-Chun. Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium–Oxygen Batteries. Journal of the American Chemical Society, vol.138, no.24, 7574-7583.

  101. Lin, Xiaodong, Yuan, Ruming, Cao, Yong, Ding, Xiaobing, Cai, Senrong, Han, Bowen, Hong, Yuhao, Zhou, Zhiyou, Yang, Xulai, Gong, Lei, Zheng, Mingsen, Dong, Quanfeng. Controlling Reversible Expansion of Li2O2 Formation and Decomposition by Modifying Electrolyte in Li-O2 Batteries. Chem, vol.4, no.11, 2685-2698.

  102. Yao, Koffi P. C., Frith, James T., Sayed, Sayed Youssef, Bardé, Fanny, Owen, John R., Shao-Horn, Yang, Garcia-Araez, Nuria. Utilization of Cobalt Bis(terpyridine) Metal Complex as Soluble Redox Mediator in Li–O2 Batteries. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.120, no.30, 16290-16297.

  103. Matsuda, S., Mori, S., Kubo, Y., Uosaki, K., Hashimoto, K., Nakanishi, S.. Cobalt phthalocyanine analogs as soluble catalysts that improve the charging performance of Li-O2 batteries. Chemical physics letters, vol.620, 78-81.

  104. Kwak, Won-Jin, Mahammed, Atif, Kim, Hun, Nguyen, Trung Thien, Gross, Zeev, Aurbach, Doron, Sun, Yang-Kook. Controllable and stable organometallic redox mediators for lithium oxygen batteries. Materials horizons, vol.7, no.1, 214-222.

  105. Zhu, Yun Guang, Wang, Xingzhu, Jia, Chuankun, Yang, Jing, Wang, Qing. Redox-Mediated ORR and OER Reactions: Redox Flow Lithium Oxygen Batteries Enabled with a Pair of Soluble Redox Catalysts. ACS catalysis, vol.6, no.9, 6191-6197.

  106. Gao, Xiangwen, Chen, Yuhui, Johnson, Lee R., Jovanov, Zarko P., Bruce, Peter G.. A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode. Nature energy, vol.2, no.9, 17118-.

  107. Liang, Zhuojian, Zhou, Yucun, Lu, Yi-Chun. Dynamic oxygen shield eliminates cathode degradation in lithium-oxygen batteries. Energy & environmental science, vol.11, no.12, 3500-3510.

  108. Cao, Deqing, Shen, Xiaoxiao, Wang, Yaowei, Liu, Jianpeng, Shi, Huibing, Gao, Xiangwen, Liu, Xiaojing, Fu, Lijun, Wu, Yuping, Chen, Yuhui. Conductive Polymer Coated Cathodes in Li-O2 Batteries. ACS applied energy materials, vol.3, no.1, 951-956.

  109. Kim, Hun, Kwak, Won-Jin, Jung, Hun-Gi, Sun, Yang-Kook. Limited effects of a redox mediator in lithium-oxygen batteries: indecomposable by-products. Journal of materials chemistry. A, Materials for energy and sustainability, vol.8, no.11, 5622-5628.

  110. Asadi, Mohammad, Sayahpour, Baharak, Abbasi, Pedram, Ngo, Anh T., Karis, Klas, Jokisaari, Jacob R., Liu, Cong, Narayanan, Badri, Gerard, Marc, Yasaei, Poya, Hu, Xuan, Mukherjee, Arijita, Lau, Kah Chun, Assary, Rajeev S., Khalili-Araghi, Fatemeh, Klie, Robert F., Curtiss, Larry A., Salehi-Khojin, Amin. A lithium–oxygen battery with a long cycle life in an air-like atmosphere. Nature, vol.555, no.7697, 502-506.

  111. Tułodziecki, Michał, Leverick, Graham M., Amanchukwu, Chibueze V., Katayama, Yu, Kwabi, David G., Bardé, Fanny, Hammond, Paula T., Shao-Horn, Yang. The role of iodide in the formation of lithium hydroxide in lithium-oxygen batteries. Energy & environmental science, vol.10, no.8, 1828-1842.

  112. Leverick, Graham, Tułodziecki, Michał, Tatara, Ryoichi, Bardé, Fanny, Shao-Horn, Yang. Solvent-Dependent Oxidizing Power of LiI Redox Couples for Li-O2 Batteries. Joule, vol.3, no.4, 1106-1126.

  113. Liu, Tao, Kim, Gunwoo, Jónsson, Erlendur, Castillo-Martinez, Elizabeth, Temprano, Israel, Shao, Yuanlong, Carretero-González, Javier, Kerber, Rachel N., Grey, Clare P.. Understanding LiOH Formation in a Li-O2 Battery with LiI and H2O Additives. ACS catalysis, vol.9, no.1, 66-77.

  114. Kwabi, David G., Batcho, Thomas P., Amanchukwu, Chibueze V., Ortiz-Vitoriano, Nagore, Hammond, Paula, Thompson, Carl V., Shao-Horn, Yang. Chemical Instability of Dimethyl Sulfoxide in Lithium–Air Batteries. The journal of physical chemistry letters, vol.5, no.16, 2850-2856.

  115. Burke, Colin M., Black, Robert, Kochetkov, Ivan R., Giordani, Vincent, Addison, Dan, Nazar, Linda F., McCloskey, Bryan D.. Implications of 4 e Oxygen Reduction via Iodide Redox Mediation in Li–O2 Batteries. ACS energy letters, vol.1, no.4, 747-756.

  116. Zhu, X. B., Zhao, T. S., Wei, Z. H., Tan, P., An, L.. A high-rate and long cycle life solid-state lithium–air battery. Energy & environmental science, vol.8, no.12, 3745-3754.

  117. Yin, Wei, Grimaud, Alexis, Azcarate, Iban, Yang, Chunzhen, Tarascon, Jean-Marie. Electrochemical Reduction of CO2 Mediated by Quinone Derivatives: Implication for Li-CO2 Battery. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.122, no.12, 6546-6554.

  118. Liu, Zixuan, Zhang, Yantao, Jia, Chuankun, Wan, Hao, Peng, Zhe, Bi, Yujing, Liu, Yang, Peng, Zhangquan, Wang, Qing, Li, Hong, Wang, Deyu, Zhang, Ji-Guang. Decomposing lithium carbonate with a mobile catalyst. Nano energy, vol.36, 390-397.

  119. Wang, Xin‐Gai, Wang, Chengyi, Xie, Zhaojun, Zhang, Xin, Chen, Yanan, Wu, Dihua, Zhou, Zhen. Improving Electrochemical Performances of Rechargeable Li−CO2 Batteries with an Electrolyte Redox Mediator. ChemElectroChem, vol.4, no.9, 2145-2149.

  120. Khurram, Aliza, He, Mingfu, Gallant, Betar M.. Tailoring the Discharge Reaction in Li-CO2 Batteries through Incorporation of CO2 Capture Chemistry. Joule, vol.2, no.12, 2649-2666.

  121. Lee, Dong Jin, Lee, Hongkyung, Kim, Yun‐Jung, Park, Jung‐Ki, Kim, Hee‐Tak. Sustainable Redox Mediation for Lithium–Oxygen Batteries by a Composite Protective Layer on the Lithium‐Metal Anode. Advanced materials, vol.28, no.5, 857-863.

  122. Bi, Xuanxuan, Amine, Khalil, Lu, Jun. The importance of anode protection towards lithium oxygen batteries. Journal of materials chemistry. A, Materials for energy and sustainability, vol.8, no.7, 3563-3573.

  123. Wang, Yonggang, Xia, Yongyao. Li–O2 batteries: An agent for change. Nature chemistry, vol.5, no.6, 445-447.

  124. Zhang, Xiao-Ping, Sun, Yi-Yang, Sun, Zhuang, Yang, Chu-Shu, Zhang, Tao. Anode interfacial layer formation via reductive ethyl detaching of organic iodide in lithium-oxygen batteries. Nature communications, vol.10, no.1, 3543-.

  125. Kwak, Won‐Jin, Park, Seong‐Jin, Jung, Hun‐Gi, Sun, Yang‐Kook. Optimized Concentration of Redox Mediator and Surface Protection of Li Metal for Maintenance of High Energy Efficiency in Li-O2 Batteries. Advanced energy materials, vol.8, no.9, 1702258-.

  126. Hou, Chen, Han, Jiuhui, Liu, Pan, Huang, Gang, Chen, Mingwei. Synergetic Effect of Liquid and Solid Catalysts on the Energy Efficiency of Li-O2 Batteries: Cell Performances and Operando STEM Observations. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.20, no.3, 2183-2190.

  127. Hegde, Guruprasad S., Ghosh, Arpita, Badam, Rajashekar, Matsumi, Noriyoshi, Sundara, Ramaprabhu. Role of Defects in Low-Cost Perovskite Catalysts toward ORR and OER in Lithium-Oxygen Batteries. ACS applied energy materials, vol.3, no.2, 1338-1348.

  128. Zhang, Chengji, Dandu, Naveen, Rastegar, Sina, Misal, Saurabh N., Hemmat, Zahra, Ngo, Anh T., Curtiss, Larry A., Salehi‐Khojin, Amin. A Comparative Study of Redox Mediators for Improved Performance of Li-Oxygen Batteries. Advanced energy materials, vol.10, no.27, 2000201-.

  129. Tong, Shengfu, Zheng, Mingbo, Lu, Yong, Lin, Zixia, Li, Jun, Zhang, Xueping, Shi, Yi, He, Ping, Zhou, Haoshen. Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li-O2 batteries. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.31, 16177-16182.

  130. Hong, Misun, Choi, Hee Cheul, Byon, Hye Ryung. Nanoporous NiO Plates with a Unique Role for Promoted Oxidation of Carbonate and Carboxylate Species in the Li–O2 Battery. Chemistry of materials : a publication of the American Chemical Society, vol.27, no.6, 2234-2241.

  131. Liu, Yijie, Li, Bojie, Cheng, Zhu, Li, Chao, Zhang, Xiaoyu, Guo, Shaohua, He, Ping, Zhou, Haoshen. Intensive investigation on all-solid-state Li-air batteries with cathode catalysts of single-walled carbon nanotube/RuO2. Journal of power sources, vol.395, 439-443.

  132. Cheng, Junfang, Jiang, Yuexing, Zhang, Ming, Sun, Yu, Zou, Lu, Chi, Bo, Pu, Jian, Jian, Li. Aprotic Lithium-Air Batteries Tested in Ambient Air with a High‐Performance and Low‐Cost Bifunctional Perovskite Catalyst. ChemCatChem, vol.10, no.7, 1635-1642.

  133. Ruan, Yanli, Yu, Limei, Song, Shidong, Qin, Xuhui, Sun, Jian, Li, Wanjun, Chen, Butian. Ambient lithium–air battery enabled by a versatile oxygen electrode based on boron carbide supported ruthenium. International journal of hydrogen energy, vol.44, no.59, 31153-31159.

  134. Hou, Yuyang, Liu, Yuqing, Zhou, Zhen, Liu, Lili, Guo, Haipeng, Liu, Huakun, Wang, Jiazhao, Chen, Jun. Metal-oxygen bonds: Stabilizing the intermediate species towards practical Li-air batteries. Electrochimica acta, vol.259, 313-320.

  135. Yoon, Ki Ro, Shin, Kihyun, Park, Jiwon, Cho, Su-Ho, Kim, Chanhoon, Jung, Ji-Won, Cheong, Jun Young, Byon, Hye Ryung, Lee, Hyuk Mo, Kim, Il-Doo. Brush-Like Cobalt Nitride Anchored Carbon Nanofiber Membrane: Current Collector-Catalyst Integrated Cathode for Long Cycle Li–O2 Batteries. ACS nano, vol.12, no.1, 128-139.

  136. Shen, Y., Sun, D., Yu, L., Zhang, W., Shang, Y., Tang, H., Wu, J., Cao, A., Huang, Y.. A high-capacity lithium-air battery with Pd modified carbon nanotube sponge cathode working in regular air. Carbon, vol.62, 288-295.

  137. Albertus, Paul, Girishkumar, G., McCloskey, Bryan, Sánchez-Carrera, Roel S., Kozinsky, Boris, Christensen, Jake, Luntz, A. C.. Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling. Journal of the Electrochemical Society : JES, vol.158, no.3, A343-.

  138. Wang, Sheng, Wang, Jue, Liu, Jingjing, Song, Hucheng, Liu, Yijie, Wang, Pengfei, He, Ping, Xu, Jun, Zhou, Haoshen. Ultra-fine surface solid-state electrolytes for long cycle life all-solid-state lithium-air batteries. Journal of materials chemistry. A, Materials for energy and sustainability, vol.6, no.43, 21248-21254.

  139. Tan, P., Wei, Z. H., Shyy, W., Zhao, T. S., Zhu, X. B.. A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium–air batteries in ambient air. Energy & environmental science, vol.9, no.5, 1783-1793.

  140. Lacey, Steven D., Dong, Qi, Huang, Zhennan, Luo, Jingru, Xie, Hua, Lin, Zhiwei, Kirsch, Dylan J., Vattipalli, Vivek, Povinelli, Christopher, Fan, Wei, Shahbazian-Yassar, Reza, Wang, Dunwei, Hu, Liangbing. Stable Multimetallic Nanoparticles for Oxygen Electrocatalysis. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.19, no.8, 5149-5158.

  141. Qiu, Hua-Jun, Fang, Gang, Gao, Jiaojiao, Wen, Yuren, Lv, Juan, Li, Huanglong, Xie, Guoqiang, Liu, Xingjun, Sun, Shuhui. Noble Metal-Free Nanoporous High-Entropy Alloys as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Acs materials letters, vol.1, 526-533.

  142. Xu, Wu, Wang, Jiulin, Ding, Fei, Chen, Xilin, Nasybulin, Eduard, Zhang, Yaohui, Zhang, Ji-Guang. Lithium metal anodes for rechargeable batteries. Energy & environmental science, vol.7, no.2, 513-537.

  143. Sun, Yongming, Liu, Nian, Cui, Yi. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature energy, vol.1, no.7, 16071-.

  144. Wood, Kevin N., Kazyak, Eric, Chadwick, Alexander F., Chen, Kuan-Hung, Zhang, Ji-Guang, Thornton, Katsuyo, Dasgupta, Neil P.. Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy. ACS central science, vol.2, no.11, 790-801.

  145. Bhattacharyya, Rangeet, Key, Baris, Chen, Hailong, Best, Adam S., Hollenkamp, Anthony F., Grey, Clare P.. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nature materials, vol.9, no.6, 504-510.

  146. Ling, Chen, Banerjee, Debasish, Matsui, Masaki. Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology. Electrochimica acta, vol.76, 270-274.

  147. Jäckle, Markus, Groß, Axel. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. The Journal of chemical physics, vol.141, no.17, 174710-.

  148. Assary, Rajeev S., Lu, Jun, Du, Peng, Luo , Xiangyi, Zhang, Xiaoyi, Ren, Yang, Curtiss, Larry A., Amine, Khalil. The Effect of Oxygen Crossover on the Anode of a Li-O2 Battery using an Ether‐Based Solvent: Insights from Experimental and Computational Studies. ChemSusChem, vol.6, no.1, 51-55.

  149. Freunberger, Stefan A., Chen, Yuhui, Drewett, Nicholas E., Hardwick, Laurence J., Bardé, Fanny, Bruce, Peter G.. The Lithium–Oxygen Battery with Ether‐Based Electrolytes. Angewandte Chemie. international edition, vol.50, no.37, 8609-8613.

  150. Bryantsev, Vyacheslav S., Giordani, Vincent, Walker, Wesley, Blanco, Mario, Zecevic, Strahinja, Sasaki, Kenji, Uddin, Jasim, Addison, Dan, Chase, Gregory V.. Predicting Solvent Stability in Aprotic Electrolyte Li–Air Batteries: Nucleophilic Substitution by the Superoxide Anion Radical (O2•–). The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment & general theory, vol.115, no.44, 12399-12409.

  151. Cheng, Xin-Bing, Zhang, Rui, Zhao, Chen-Zi, Zhang, Qiang. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical reviews, vol.117, no.15, 10403-10473.

  152. Gao, Xing, Du, Ying, Li, Siwu, Zhou, Junwen, Feng, Xiao, Jin, Xu, Wang, Bo. Synergistic Effects of Inorganic-Organic Protective Layer for Robust Cycling Dendrite-Free Lithium Metal Batteries. ACS applied materials & interfaces, vol.12, no.1, 844-850.

  153. Zhang, Xue‐Qiang, Cheng, Xin‐Bing, Chen, Xiang, Yan, Chong, Zhang, Qiang. Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Advanced functional materials, vol.27, no.10, 1605989-.

  154. Li, Xing, Zheng, Jianming, Ren, Xiaodi, Engelhard, Mark H., Zhao, Wengao, Li, Qiuyan, Zhang, Ji‐Guang, Xu, Wu. Dendrite‐Free and Performance‐Enhanced Lithium Metal Batteries through Optimizing Solvent Compositions and Adding Combinational Additives. Advanced energy materials, vol.8, no.15, 1703022-.

  155. Ren, Xiaodi, Zhang, Yaohui, Engelhard, Mark H., Li, Qiuyan, Zhang, Ji-Guang, Xu, Wu. Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF6 and Cyclic Carbonate Additives. ACS energy letters, vol.3, no.1, 14-19.

  156. Xu, Rui, Cheng, Xin-Bing, Yan, Chong, Zhang, Xue-Qiang, Xiao, Ye, Zhao, Chen-Zi, Huang, Jia-Qi, Zhang, Qiang. Artificial Interphases for Highly Stable Lithium Metal Anode. Matter, vol.1, no.2, 317-344.

  157. Zhou, Hongyao, Yu, Sicen, Liu, Haodong, Liu, Ping. Protective coatings for lithium metal anodes: Recent progress and future perspectives. Journal of power sources, vol.450, 227632-.

  158. Huang, Zhimei, Ren, Jing, Zhang, Wang, Xie, Meilan, Li, Yankai, Sun, Dan, Shen, Yue, Huang, Yunhui. Protecting the Li‐Metal Anode in a Li–O2 Battery by using Boric Acid as an SEI‐Forming Additive. Advanced materials, vol.30, no.39, 1803270-.

  159. Hu, L., Zhang, Z., Amine, K.. Fluorinated electrolytes for Li-ion battery: An FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple. Electrochemistry communications, vol.35, 76-79.

  160. Markevich, Elena, Salitra, Gregory, Aurbach, Doron. Fluoroethylene Carbonate as an Important Component for the Formation of an Effective Solid Electrolyte Interphase on Anodes and Cathodes for Advanced Li-Ion Batteries. ACS energy letters, vol.2, no.6, 1337-1345.

  161. Liu, Qing‐Chao, Xu, Ji‐Jing, Yuan, Shuang, Chang, Zhi‐Wen, Xu, Dan, Yin, Yan‐Bin, Li, Lin, Zhong, Hai‐Xia, Jiang, Yin‐Shan, Yan, Jun‐Min, Zhang, Xin‐Bo. Artificial Protection Film on Lithium Metal Anode toward Long‐Cycle‐Life Lithium–Oxygen Batteries. Advanced materials, vol.27, no.35, 5241-5247.

  162. Bryantsev, Vyacheslav S., Giordani, Vincent, Walker, Wesley, Uddin, Jasim, Lee, Ilkeun, van Duin, Adri C. T., Chase, Gregory V., Addison, Dan. Investigation of Fluorinated Amides for Solid–Electrolyte Interphase Stabilization in Li–O2 Batteries Using Amide-Based Electrolytes. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.117, no.23, 11977-11988.

  163. Yoo, Eunjoo, Zhou, Haoshen. Enhanced Cycle Stability of Rechargeable Li–O2 Batteries by the Synergy Effect of a LiF Protective Layer on the Li and DMTFA Additive. ACS applied materials & interfaces, vol.9, no.25, 21307-21313.

  164. Tong, Bo, Huang, Jun, Zhou, Zhibin, Peng, Zhangquan. The Salt Matters: Enhanced Reversibility of Li–O2 Batteries with a Li[(CF3SO2)(n‐C4F9SO2)N]‐Based Electrolyte. Advanced materials, vol.30, no.1, 1704841-.

  165. Barai, Pallab, Higa, Kenneth, Srinivasan, Venkat. Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. Physical chemistry chemical physics : PCCP, vol.19, no.31, 20493-20505.

  166. Chen, Lin, Chen, Kan-Sheng, Chen, Xinjie, Ramirez, Giovanni, Huang, Zhennan, Geise, Natalie R., Steinrück, Hans-Georg, Fisher, Brandon L., Shahbazian-Yassar, Reza, Toney, Michael F., Hersam, Mark C., Elam, Jeffrey W.. Novel ALD Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes. ACS applied materials & interfaces, vol.10, no.32, 26972-26981.

  167. Liao, Kaiming, Wu, Shichao, Mu, Xiaowei, Lu, Qian, Han, Min, He, Ping, Shao, Zongping, Zhou, Haoshen. Developing a “Water‐Defendable” and “Dendrite‐Free” Lithium‐Metal Anode Using a Simple and Promising GeCl4 Pretreatment Method. Advanced materials, vol.30, no.36, 1705711-.

  168. Kim, Youngjin, Koo, Dongho, Ha, Seongmin, Jung, Sung Chul, Yim, Taeeun, Kim, Hanseul, Oh, Seung Kyo, Kim, Dong-Min, Choi, Aram, Kang, Yongku, Ryu, Kyoung Han, Jang, Minchul, Han, Young-Kyu, Oh, Seung M., Lee, Kyu Tae. Two-Dimensional Phosphorene-Derived Protective Layers on a Lithium Metal Anode for Lithium-Oxygen Batteries. ACS nano, vol.12, no.5, 4419-4430.

  169. Guo, Huanhuan, Hou, Guangmei, Guo, Jianguang, Ren, Xiaohua, Ma, Xiaoxin, Dai, Linna, Guo, Shirui, Lou, Jun, Feng, Jinkui, Zhang, Lin, Si, Pengchao, Ci, Lijie. Enhanced Cycling Performance of Li-O2 Battery by Using a Li3PO4-Protected Lithium Anode in DMSO-Based Electrolyte. ACS applied energy materials, vol.1, no.10, 5511-5517.

  170. Kwak, Won-Jin, Park, Jiwon, Nguyen, Trung Thien, Kim, Hun, Byon, Hye Ryung, Jang, Minchul, Sun, Yang-Kook. A dendrite- and oxygen-proof protective layer for lithium metal in lithium-oxygen batteries. Journal of materials chemistry. A, Materials for energy and sustainability, vol.7, no.8, 3857-3862.

  171. Lee, D.J., Lee, H., Song, J., Ryou, M.H., Lee, Y.M., Kim, H.T., Park, J.K.. Composite protective layer for Li metal anode in high-performance lithium-oxygen batteries. Electrochemistry communications, vol.40, 45-48.

  172. Kim, Byung Gon, Kim, Joo‐Seong, Min, Jaeyun, Lee, Yong‐Hee, Choi, Jeong Hoon, Jang, Min Chul, Freunberger, Stefan A., Choi, Jang Wook. A Moisture‐ and Oxygen‐Impermeable Separator for Aprotic Li‐O2 Batteries. Advanced functional materials, vol.26, no.11, 1747-1756.

  173. Luo, Kun, Zhu, Guangbin, Zhao, Yuzhen, Luo, Zhihong, Liu, Xiaoteng, Zhang, Kui, Li, Yali, Scott, Keith. Enhanced cycling stability of Li-O2 batteries by using a polyurethane/SiO2/glass fiber nanocomposite separator. Journal of materials chemistry. A, Materials for energy and sustainability, vol.6, no.17, 7770-7776.

  174. Amici, Julia, Alidoost, Mojtaba, Caldera, Fabrizio, Versaci, Daniele, Zubair, Usman, Trotta, Francesco, Francia, Carlotta, Bodoardo, Silvia. PEEK‐WC/Nanosponge Membranes for Lithium‐Anode Protection in Rechargeable Li−O2 Batteries. ChemElectroChem, vol.5, no.12, 1599-1605.

  175. Qiao, Yu, He, Yibo, Wu, Shichao, Jiang, Kezhu, Li, Xiang, Guo, Shaohua, He, Ping, Zhou, Haoshen. MOF-Based Separator in an Li–O2 Battery: An Effective Strategy to Restrain the Shuttling of Dual Redox Mediators. ACS energy letters, vol.3, no.2, 463-468.

  176. Wu, Shichao, Qiao, Yu, Deng, Han, Zhou, Haoshen. A single ion conducting separator and dual mediator-based electrolyte for high-performance lithium-oxygen batteries with non-carbon cathodes. Journal of materials chemistry. A, Materials for energy and sustainability, vol.6, no.21, 9816-9822.

  177. Liu, Yijie, Li, Bojie, Kitaura, Hirokazu, Zhang, Xueping, Han, Min, He, Ping, Zhou, Haoshen. Fabrication and Performance of All-Solid-State Li–Air Battery with SWCNTs/LAGP Cathode. ACS applied materials & interfaces, vol.7, no.31, 17307-17310.

  178. Li, Yutao, Chen, Xi, Dolocan, Andrei, Cui, Zhiming, Xin, Sen, Xue, Leigang, Xu, Henghui, Park, Kyusung, Goodenough, John B.. Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries. Journal of the American Chemical Society, vol.140, no.20, 6448-6455.

  179. Thangadurai, Venkataraman, Narayanan, Sumaletha, Pinzaru, Dana. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chemical Society reviews, vol.43, no.13, 4714-4727.

  180. Wang, Jin, Yin, Yanbin, Liu, Tong, Yang, Xiaoyang, Chang, Zhiwen, Zhang, Xinbo. Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries. Nano research, vol.11, no.6, 3434-3441.

  181. Lancel, Gilles, Stevens, Philippe, Toussaint, Gwenaëlle, Maréchal, Manuel, Krins, Natacha, Bregiroux, Damien, Laberty-Robert, Christel. Hybrid Li Ion Conducting Membrane as Protection for the Li Anode in an Aqueous Li–Air Battery: Coupling Sol–Gel Chemistry and Electrospinning. Langmuir : the ACS journal of surfaces and colloids, vol.33, no.37, 9288-9297.

  182. He, Linchun, Sun, Qiaomei, Chen, Chao, Oh, Jin An Sam, Sun, Jianguo, Li, Minchan, Tu, Wenqiang, Zhou, Henghui, Zeng, Kaiyang, Lu, Li. Failure Mechanism and Interface Engineering for NASICON-Structured All-Solid-State Lithium Metal Batteries. ACS applied materials & interfaces, vol.11, no.23, 20895-20904.

  183. Sudo, R., Nakata, Y., Ishiguro, K., Matsui, M., Hirano, A., Takeda, Y., Yamamoto, O., Imanishi, N.. Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid state ionics, vol.262, 151-154.

  184. Porz, Lukas, Swamy, Tushar, Sheldon, Brian W., Rettenwander, Daniel, Frömling, Till, Thaman, Henry L., Berendts, Stefan, Uecker, Reinhard, Carter, W. Craig, Chiang, Yet‐Ming. Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes. Advanced energy materials, vol.7, no.20, 1701003-.

  185. Shen, Fengyu, Dixit, Marm B., Xiao, Xianghui, Hatzell, Kelsey B.. Effect of Pore Connectivity on Li Dendrite Propagation within LLZO Electrolytes Observed with Synchrotron X-ray Tomography. ACS energy letters, vol.3, 1056-1061.

  186. Balaish, Moran, Jung, Ji‐Won, Kim, Il‐Doo, Ein‐Eli, Yair. A Critical Review on Functionalization of Air‐Cathodes for Nonaqueous Li–O2 Batteries. Advanced functional materials, vol.30, no.18, 1808303-.

  187. Liu, Lili, Guo, Haipeng, Fu, Lijun, Chou, Shulei, Thiele, Simon, Wu, Yuping, Wang, Jiazhao. Critical Advances in Ambient Air Operation of Nonaqueous Rechargeable Li–Air Batteries. Small, vol.17, no.9, 1903854-.

  188. Kwak, Won-Jin, Rosy,, Sharon, Daniel, Xia, Chun, Kim, Hun, Johnson, Lee R., Bruce, Peter G., Nazar, Linda F., Sun, Yang-Kook, Frimer, Aryeh A., Noked, Malachi, Freunberger, Stefan A., Aurbach, Doron. Lithium-Oxygen Batteries and Related Systems: Potential, Status, and Future. Chemical reviews, vol.120, no.14, 6626-6683.

  189. Sahapatsombut, U., Cheng, H., Scott, K.. Modelling of operation of a lithium-air battery with ambient air and oxygen-selective membrane. Journal of power sources, vol.249, 418-430.

  190. Zhang, Ji-Guang, Wang, Deyu, Xu, Wu, Xiao, Jie, Williford, R.E.. Ambient operation of Li/Air batteries. Journal of power sources, vol.195, no.13, 4332-4337.

  191. Crowther, O., Keeny, D., Moureau, D.M., Meyer, B., Salomon, M., Hendrickson, M.. Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane. Journal of power sources, vol.202, 347-351.

  192. Zhang, Jian, Xu, Wu, Li, Xiaohong, Liu, Wei. Air Dehydration Membranes for Nonaqueous Lithium-Air Batteries. Journal of the Electrochemical Society : JES, vol.157, no.8, A940-.

  193. Zou, Xiaohong, Liao, Kaiming, Wang, Di, Lu, Qian, Zhou, Chuan, He, Ping, Ran, Zhou, Wei, Jin, Wanqin, Shao, Zongping. Water-proof, electrolyte-nonvolatile, and flexible Li-Air batteries via O2-Permeable silica-aerogel-reinforced polydimethylsiloxane external membranes. Energy storage materials, vol.27, 297-306.

  194. Zhang, Jian, Xu, Wu, Liu, Wei. Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air. Journal of power sources, vol.195, no.21, 7438-7444.

  195. Amici, Julia, Francia, Carlotta, Zeng, Juqin, Bodoardo, Silvia, Penazzi, Nerino. Protective PVDF-HFP-based membranes for air de-hydration at the cathode of the rechargeable Li-air cell. Journal of applied electrochemistry, vol.46, no.5, 617-626.

  196. Amici, J., Alidoost, M., Francia, C., Bodoardo, S., Martinez Crespiera, S., Amantia, D., Biasizzo, M., Caldera, F., Trotta, F.. O2 selective membranes based on a dextrin-nanosponge (NS) in a PVDF-HFP polymer matrix for Li-air cells. Chemical communications : Chem comm, vol.52, no.94, 13683-13686.

  197. Fernicola, A., Croce, F., Scrosati, B., Watanabe, T., Ohno, H.. LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries. Journal of power sources, vol.174, no.1, 342-348.

  198. Shin, J.H., Cairns, E.J.. N-Methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI-poly(ethylene glycol) dimethyl ether mixture as a Li/S cell electrolyte. Journal of power sources, vol.177, no.2, 537-545.

  199. Das, Supti, Højberg, Jonathan, Knudsen, Kristian Bastholm, Younesi, Reza, Johansson, Patrik, Norby, Poul, Vegge, Tejs. Instability of Ionic Liquid-Based Electrolytes in Li–O2 Batteries. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.119, no.32, 18084-18090.

  200. Giordani, Vincent, Tozier, Dylan, Tan, Hongjin, Burke, Colin M., Gallant, Betar M., Uddin, Jasim, Greer, Julia R., McCloskey, Bryan D., Chase, Gregory V., Addison, Dan. A Molten Salt Lithium–Oxygen Battery. Journal of the American Chemical Society, vol.138, no.8, 2656-2663.

  201. Baek, Kyungeun, Jeon, Woo Cheol, Woo, Seongho, Kim, Jin Chul, Lee, Jun Gyeong, An, Kwangjin, Kwak, Sang Kyu, Kang, Seok Ju. Synergistic effect of quinary molten salts and ruthenium catalyst for high-power-density lithium-carbon dioxide cell. Nature communications, vol.11, no.1, 456-.

  202. Zhou, Jingwen, Li, Xuelian, Yang, Chao, Li, Yinchuan, Guo, Kunkun, Cheng, Jianli, Yuan, Dingwang, Song, Chenhui, Lu, Jun, Wang, Bin. A Quasi‐Solid‐State Flexible Fiber‐Shaped Li–CO2 Battery with Low Overpotential and High Energy Efficiency. Advanced materials, vol.31, no.3, 1804439-.

  203. Yang, Chao, Guo, Kunkun, Yuan, Dingwang, Cheng, Jianli, Wang, Bin. Unraveling Reaction Mechanisms of Mo2C as Cathode Catalyst in a Li-CO2 Battery. Journal of the American Chemical Society, vol.142, no.15, 6983-6990.

  204. LiThese authors contributed equally to this work., Siwu, Liu, Yuan, Zhou, Junwen, Hong, Shanshan, Dong, Yu, Wang, Jiaming, Gao, Xing, Qi, Pengfei, Han, Yuzhen, Wang, Bo. Monodispersed MnO nanoparticles in graphene-an interconnected N-doped 3D carbon framework as a highly efficient gas cathode in Li-CO2 batteries. Energy & environmental science, vol.12, no.3, 1046-1054.

  205. Lu, Jun, Lei, Yu, Lau, Kah Chun, Luo, Xiangyi, Du, Peng, Wen, Jianguo, Assary, Rajeev S., Das, Ujjal, Miller, Dean J., Elam, Jeffrey W., Albishri, Hassan M., El-Hady, D Abd, Sun, Yang-Kook, Curtiss, Larry A., Amine, Khalil. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nature communications, vol.4, 2383-.

  206. Bae, Youngjoon, Ko, Dong‐Hyun, Lee, Sunyoung, Lim, Hee‐Dae, Kim, Yun‐Jung, Shim, Hyun‐Soo, Park, Hyeokjun, Ko, Youngmin, Park, Sung Kwan, Kwon, Hyuk Jae, Kim, Hyunjin, Kim, Hee‐Tak, Min, Yo‐Sep, Im, Dongmin, Kang, Kisuk. Enhanced Stability of Coated Carbon Electrode for Li‐O2 Batteries and Its Limitations. Advanced energy materials, vol.8, no.16, 1702661-.

  207. Zhang, Tao, Zhou, Haoshen. A reversible long-life lithium–air battery in ambient air. Nature communications, vol.4, 1817-.

  208. Lee, Yong-Gun, Fujiki, Satoshi, Jung, Changhoon, Suzuki, Naoki, Yashiro, Nobuyoshi, Omoda, Ryo, Ko, Dong-Su, Shiratsuchi, Tomoyuki, Sugimoto, Toshinori, Ryu, Saebom, Ku, Jun Hwan, Watanabe, Taku, Park, Youngsin, Aihara, Yuichi, Im, Dongmin, Han, In Taek. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nature energy, vol.5, no.4, 299-308.

  209. Park, Kyusung, Yu, Byeong-Chul, Jung, Ji-Won, Li, Yutao, Zhou, Weidong, Gao, Hongcai, Son, Samick, Goodenough, John B.. Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12. Chemistry of materials : a publication of the American Chemical Society, vol.28, no.21, 8051-8059.

  210. Yoo, Dong‐Joo, Yang, Sungyun, Kim, Ki Jae, Choi, Jang Wook. Fluorinated Aromatic Diluent for High‐Performance Lithium Metal Batteries. Angewandte Chemie. international edition, vol.59, no.35, 14869-14876.

  211. Gallagher, Kevin G., Goebel, Steven, Greszler, Thomas, Mathias, Mark, Oelerich, Wolfgang, Eroglu, Damla, Srinivasan, Venkat. Quantifying the promise of lithium–air batteries for electric vehicles. Energy & environmental science, vol.7, no.5, 1555-1563.

  212. Li, Matthew, Bi, Xuanxuan, Wang, Rongyue, Li, Yingbo, Jiang, Gaopeng, Li, Liang, Zhong, Cheng, Chen, Zhongwei, Lu, Jun. Relating Catalysis between Fuel Cell and Metal-Air Batteries. Matter, vol.2, no.1, 32-49.

  213. Adams, Jim, Karulkar, Mohan. Bipolar plate cell design for a lithium air battery. Journal of power sources, vol.199, 247-255.

  214. Lee, Heung Chan, Park, Jung Ock, Kim, Mokwon, Kwon, Hyuk Jae, Kim, Joon-Hee, Choi, Kyoung Hwan, Kim, Kihong, Im, Dongmin. High-Energy-Density Li-O2 Battery at Cell Scale with Folded Cell Structure. Joule, vol.3, no.2, 542-556.

  215. Gittleson, Forrest S., Jones, Reese E., Ward, Donald K., Foster, Michael E.. Oxygen solubility and transport in Li-air battery electrolytes: establishing criteria and strategies for electrolyte design. Energy & environmental science, vol.10, no.5, 1167-1179.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로