$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] COVID-19 and cancer: From basic mechanisms to vaccine development using nanotechnology 원문보기

International immunopharmacology, v.90, 2021년, pp.107247 -   

Han, Hyun Jee (University College London, Department of Neonatology) ,  Nwagwu, Chinekwu (Department of Pharmaceutics, University of Nigeria Nsukka) ,  Anyim, Obumneme (Department of Internal Medicine, University of Nigeria Teaching Hospital Ituku-Ozalla) ,  Ekweremadu, Chinedu (Department of Pharmaceutics and Pharmaceutical Technology Enugu State University of Science and Technology) ,  Kim, San (Basildon and Thurrock University Hospital)

Abstract AI-Helper 아이콘AI-Helper

Abstract Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic which has induced unprecedented ramifications, severely affecting our society due to the long incubation time, unpredictably high prevalence and lack of effecti...

Keyword

참고문헌 (147)

  1. 1 NHS, “NHS COVID-19 Daily Deaths,” 2020. [Online]. Available: https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-daily-deaths/. [Accessed: 28-Jun-2020]. 

  2. 2 Baharoon S. Memish Z.A. MERS-CoV as an emerging respiratory illness: A review of prevention methods Travel Med. Infect. Dis. 32 Nov. 2019 101520 

  3. 3 Wu Z. McGoogan J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China JAMA 323 13 2020 1239 32091533 

  4. 4 Wang D. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China JAMA 323 11 2020 1061 32031570 

  5. 5 Guo Y.-R. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status Mil. Med. Res. 7 1 2020 11 32169119 

  6. 6 Zhou F. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study Lancet (London, England) 395 10229 2020 1054 1062 32171076 

  7. 7 Liang W. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China Lancet Oncol. 21 3 2020 335 337 32066541 

  8. 8 M. F et al., “Human rhinovirus and coronavirus detection among allogeneic hematopoietic stem cell transplantation recipients,” Blood, vol. 115, no. 10, 2010. 

  9. 9 Ogimi C. Clinical Significance of Human Coronavirus in Bronchoalveolar Lavage Samples From Hematopoietic Cell Transplant Recipients and Patients With Hematologic Malignancies Clin. Infect. Dis. 64 11 2017 1532 1539 28329354 

  10. 10 C. RF et al., “Respiratory viral infections in adults with hematologic malignancies and human stem cell transplantation recipients: a retrospective study at a major cancer center,” Medicine (Baltimore)., vol. 85, no. 5, 2006. 

  11. 11 Hakim H. Acute Respiratory Infections in Children and Adolescents with Acute Lymphoblastic Leukemia Cancer 122 5 2016 798 26700662 

  12. 12 Shin M.D. COVID-19 vaccine development and a potential nanomaterial path forward Nat. Nanotechnol. 15 8 2020 646 655 32669664 

  13. 13 S. R. Weiss and J. L. Leibowitz, Coronavirus pathogenesis, vol. 81, no. January. 2011. 

  14. 14 Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins Annu. Rev. Virol. 3 2016 237 261 27578435 

  15. 15 He Y. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: Implication for developing subunit vaccine Biochem. Biophys. Res. Commun. 324 2 2004 773 781 15474494 

  16. 16 B. Chen et al., “Overview of lethal human coronaviruses,” Signal Transduct. Target. Ther., vol. 5, no. 1, 2020. 

  17. 17 Z. Song et al., “From SARS to MERS, thrusting coronaviruses into the spotlight,” Viruses, vol. 11, no. 1, 2019. 

  18. 18 Wolf Y.I. Origins and Evolution of the Global RNA Virome MBio 9 6 2018 

  19. 19 Wu A. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China Cell Host Microbe 27 3 2020 325 328 32035028 

  20. 20 Zhu Z. Predicting the receptor-binding domain usage of the coronavirus based on kmer frequency on spike protein Infect. Genet. Evol. 61 2018 183 184 29625240 

  21. 21 Pachetti M. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant J. Transl. Med. 18 1 2020 1 9 31900168 

  22. 22 Pybus O.G. Tatem A.J. Lemey P. Virus evolution and transmission in an ever more connected world Proc. R. Soc. B Biol. Sci. 282 1821 2015 1 10 

  23. 23 Mahy B.W.J. The Evolution and Emergence of RNA Viruses Emerg. Infect. Dis. 16 5 2010 899 

  24. 24 C. Yin, “Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information ,” no. January, 2020. 

  25. 25 Armengaud J. The importance of naturally attenuated SARS-CoV-2in the fight against COVID-19 Environ. Microbiol. 22 6 2020 1997 2000 32342578 

  26. 26 T. Phan, “Genetic diversity and evolution of SARS-CoV-2,” Infect. Genet. Evol., vol. 81, no. January, 2020. 

  27. 27 L. A. Holland et al., “An 81 nucleotide deletion in SARS-CoV-2 ORF7a identified from sentinel surveillance in Arizona (Jan-Mar 2020),” J. Virol., no. May, pp. 2–4, 2020. 

  28. 28 Kim Y. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2 Protein Sci. 29 7 2020 1596 1605 32304108 

  29. 29 Angeletti S. Benvenuto D. Bianchi M. Giovanetti M. Pascarella S. Ciccozzi M. COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis J. Med. Virol. 92 6 2020 584 588 32083328 

  30. 30 Armijos-Jaramillo V. Yeager J. Muslin C. Perez-Castillo Y. SARS-CoV-2, an evolutionary perspective of interaction with human ACE2 reveals undiscovered amino acids necessary for complex stability Evol. Appl. 13 9 2020 2168 2178 32837536 

  31. 31 Z. Shen et al., “Genomic diversity of SARS-CoV-2 in COVID-19 patients,” pp. 1–27, 2019. 

  32. 32 Islam M.R. Genome-wide analysis of SARS-CoV-2 virus strains circulating worldwide implicates heterogeneity Sci. Rep. 10 1 2020 1 9 31913322 

  33. 33 Hoffmann M. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor Cell 181 2 2020 271 280.e8 32142651 

  34. 34 Shirato K. A pathological report of three COVID-19 cases by minimally invasive autopsies J. Virol. 2 2020 1 9 

  35. 35 J. L. Mckimm-Breschkin, “Influenza neuraminidase inhibitors: Antiviral action and mechanisms of resistance,” Influenza Other Respi. Viruses, vol. 7, no. 1 SUPPL.1, pp. 25–36, 2013. 

  36. 36 Centre for Disease Control and Prevention, “People with Certain Medical Conditions,” 2020. 

  37. 37 Barton L.M. Duval E.J. Stroberg E. Ghosh S. Mukhopadhyay S. COVID-19 Autopsies, Oklahoma, USA Am. J. Clin. Pathol. 153 6 2020 725 733 32275742 

  38. 38 B. Bradley et al., “Histopathology and Ultrastructural Findings of Fatal COVID-19 Infections,” 2020. 

  39. 39 S. E. Fox, A. Akmatbekov, J. L. Harbert, G. Li, and J. Q. Brown, “*not peer reviewed* Pulmonary and Cardiac Pathology in Covid-19 : The First Autopsy Series from New Orleans 1) Department of Pathology , LSU Health Sciences Center , New Orleans 2) Pathology and Laboratory Medicine Service , Southeast Louisiana Veterans,” medRxiv, p. 2020.04.06.20050575, 2020. 

  40. 40 Tian S. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies Mod. Pathol. 33 6 2020 1007 1014 32291399 

  41. 41 Menter T. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction Histopathology 77 2 2020 198 209 32364264 

  42. 42 Wichmann D. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study Ann. Intern. Med. 173 4 2020 268 277 32374815 

  43. 43 Kissling S. Collapsing glomerulopathy in a COVID-19 patient Kidney Int. 98 1 2020 228 231 32471639 

  44. 44 Larsen C.P. Bourne T.D. Wilson J.D. Saqqa O. Sharshir M.A. Collapsing Glomerulopathy in a Patient With COVID-19 Kidney Int. Reports 5 6 2020 935 939 

  45. 45 Xu X. Pathological changes of the spleen in ten patients with coronavirus disease 2019(COVID-19) by postmortem needle autopsy] Zhonghua bing li xue za zhi = Chinese J. Pathol. 49 6 2020 576 582 

  46. 46 Thevarajan I. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19 Nat. Med. 26 4 2020 453 455 32284614 

  47. 47 Gomez Lorenzo M.M. Fenton M.J. Immunobiology of influenza vaccines Chest 143 2 2013 502 510 23381315 

  48. 48 D. A. Kaminski and F. E. H. Lee, “Antibodies against conserved antigens provide opportunities for reform in influenza vaccine design,” Front. Immunol., vol. 2, no. DEC, pp. 1–14, 2011. 

  49. 49 Barnes C.O. Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies Cell 182 4 2020 828 842.e16 32645326 

  50. 50 Zhang J. Zeng H. Gu J. Li H. Zheng L. Zou Q. Progress and prospects on vaccine development against sars-cov-2 Vaccines 8 2 2020 1 12 

  51. 51 Sanyaolu A. Comorbidity and its Impact on Patients with COVID-19 SN Compr Clin. Med. 2 8 2020 

  52. 52 Macmillan Cancer Suport, “Statistics Fact Sheet,” Feb-2019. 

  53. 53 Cancer Research UK, “Cancer Statistics for the UK,” 2020. 

  54. 54 NHS Choices, “Cancer,” Sep-2019. 

  55. 55 Pirschel Chris The Impact of Comorbidities on Patient Care ONS Voice 2017 

  56. 56 Zeber J.E. Copeland L.A. Hosek B.J. Karnad A.B. Lawrence V.A. Sanchez-Reilly S.E. Cancer rates, medical comorbidities, and treatment modalities in the oldest patients Crit. Rev. Oncol. Hematol. 67 3 2008 

  57. 57 Kadan-Lottick N.S. Vanderwerker L.C. Block S.D. Zhang B. Prigerson H.G. Psychiatric disorders and mental health service use in patients with advanced cancer Cancer 104 12 2005 

  58. 58 Sarfati D. Koczwara B. Jackson C. The impact of comorbidity on cancer and its treatment CA Cancer J. Clin. 66 4 2016 

  59. 59 Zhang L. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China Ann. Oncol. 31 7 2020 

  60. 60 C. B. Yeoh et al., “COVID-19 in the Cancer Patient,” vol. XXX, no. Xxx, pp. 1–8, 2020. 

  61. 61 Hijano D.R. Maron G. Hayden R.T. Respiratory Viral Infections in Patients With Cancer or Undergoing Hematopoietic Cell Transplant Front. Microbiol. 9 2018 3097 30619176 

  62. 62 Lee L.Y.W. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: a prospective cohort study Lancet 395 10241 2020 1919 1926 32473682 

  63. 63 Rogado J. Covid-19 transmission, outcome and associated risk factors in cancer patients at the first month of the pandemic in a Spanish hospital in Madrid Clin. Transl. Oncol. 22 12 2020 2364 2368 32449128 

  64. 64 Geisslinger F. Vollmar A.M. Bartel K. Cancer patients have a higher risk regarding COVID-19 – and vice versa? Pharmaceuticals 13 7 2020 1 14 

  65. 65 Bhardwaj K. Liu P. Leibowitz J.L. Kao C.C. The Coronavirus Endoribonuclease Nsp15 Interacts with Retinoblastoma Tumor Suppressor Protein J. Virol. 86 8 2012 4294 4304 22301153 

  66. 66 C. Li and S. Wallace, “Polymer-drug conjugates : Recent development in clinical oncology ☆,” vol. 60, pp. 886–898, 2008. 

  67. 67 Geisslinger F. Vollmar A.M. Bartel K. Cancer Patients Have a Higher Risk Regarding COVID-19 - and Vice Versa? Pharmaceuticals (Basel) 13 7 2020 

  68. 68 Gosain R. Abdou Y. Singh A. Rana N. Puzanov I. Ernstoff M.S. COVID-19 and Cancer: a Comprehensive Review Curr. Oncol. Rep. 22 5 2020 

  69. 69 Bavishi C. Maddox T.M. Messerli F.H. Coronavirus Disease 2019 (COVID-19) Infection and Renin Angiotensin System Blockers JAMA Cardiol. 5 7 2020 

  70. 70 Chen W.H. Strych U. Hotez P.J. Bottazzi M.E. The SARS-CoV-2 Vaccine Pipeline: an Overview Curr. Trop. Med. Reports 7 2 2020 61 64 

  71. 71 H. Ji, Y. Yan, B. Ding, W. Guo, M. Brunswick, and A. Niethammer, “Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information ,” no. January, 2020. 

  72. 72 Billeskov R. Low Antigen Dose in Adjuvant-Based Vaccination Selectively Induces CD4 T Cells with Enhanced Functional Avidity and Protective Efficacy J. Immunol. 198 9 2017 3494 3506 28348274 

  73. 73 M. D. Shin et al., “COVID-19 vaccine development and a potential nanomaterial path forward,” Nature Nanotechnology. Nature Research, 2020. 

  74. 74 Kang S.H. Hong S.J. Lee Y.K. Cho S. Oral vaccine delivery for intestinal immunity-biological basis, barriers, delivery system, and M cell targeting Polymers 10 9 2018 MDPI AG 

  75. 75 Khosravi-Darani K. Mozafari M. Nanoliposome Potentials in Nanotherapy: A Concise Overview Int. J. Nanosci. Nanotechnol. 6 1 2010 3 13 

  76. 76 Marasini N. Multilayer engineered nanoliposomes as a novel tool for oral delivery of lipopeptide-based vaccines against group A Streptococcus Nanomedicine 11 10 2016 1223 1236 27077314 

  77. 77 Dahiya M. Dureja H. Recent Developments in the Formulation of Nanoliposomal Delivery Systems Curr. Nanomater. 3 2 2018 62 74 

  78. 78 N. Marasini, M. Skwarczynski, and I. Toth, “Oral delivery of nanoparticle-based vaccines,” Expert Review of Vaccines, vol. 13, no. 11. Expert Reviews Ltd., pp. 1361–1376, Nov-2014. 

  79. 79 Choudhury H. Gorain B. Chatterjee B. Mandal U.K. Sengupta P. Tekade R.K. Pharmacokinetic and Pharmacodynamic Features of Nanoemulsion Following Oral, Intravenous, Topical and Nasal Route Curr. Pharm. Des. 23 17 2017 2504 2531 27908273 

  80. 80 Singh Y. Nanoemulsion: Concepts, development and applications in drug delivery J. Control. Release 252 2017 28 49 28279798 

  81. 81 Pridgen E.M. Alexis F. Farokhzad O.C. Polymeric Nanoparticle Technologies for Oral Drug Delivery Clin. Gastroenterol. Hepatol. 12 10 2014 1605 1610 24981782 

  82. 82 J. E. Vela Ramirez, L. A. Sharpe, and N. A. Peppas, “Current state and challenges in developing oral vaccines,” Advanced Drug Delivery Reviews, vol. 114. Elsevier B.V., pp. 116–131, May-2017. 

  83. 83 J. W. Coffey, G. Das Gaiha, and G. Traverso, “Oral Biologic Delivery: Advances Towards Oral Subunit, DNA and mRNA Vaccines and the Potential for Mass Vaccination During Pandemics,” Annu. Rev. Pharmacol. Toxicol., vol. 61, no. 1, Jan. 2020. 

  84. 84 R. R. C. New, “Formulation technologies for oral vaccines,” Clinical and Experimental Immunology, vol. 198, no. 2. Blackwell Publishing Ltd, pp. 153–169, Nov-2019. 

  85. 85 Jin Z. Gao S. Cui X. Sun D. Zhao K. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines Int. J. Pharm. 572 2019 118731 

  86. 86 P. Simerska, P. M. Moyle, C. Olive, and I. Toth, “Oral Vaccine Delivery-New Strategies and Technologies,” 2009. 

  87. 87 E. C. Lavelle and D. T. O’Hagan, “Delivery systems and adjuvants for oral vaccines,” Expert Opinion on Drug Delivery, vol. 3, no. 6. pp. 747–762, Nov-2006. 

  88. 88 McBurney W.T. Lendemans D.G. Myschik J. Hennessy T. Rades T. Hook S. In vivo activity of cationic immune stimulating complexes (PLUSCOMs) Vaccine 26 35 2008 4549 4556 18585421 

  89. 89 Mowat A.M. Maloy K.J. Donachie A.M. Immune-stimulating complexes as adjuvants for inducing local and systemic immunity after oral immunization with protein antigens Immunology 80 4 1993 527 534 7508416 

  90. 90 Chroboczek J. Szurgot I. Szolajska E. Virus-like particles as vaccine Acta Biochim. Pol. 61 3 2014 531 539 25273564 

  91. 91 Roldão A. Mellado M.C.M. Castilho L.R. Carrondo M.J.T. Alves P.M. Virus-like particles in vaccine development Expert Rev. Vaccines 9 10 2010 1149 1176 20923267 

  92. 92 Huang X. Wang X. Zhang J. Xia N. Zhao Q. Escherichia coli-derived virus-like particles in vaccine development npj Vaccines 2 1 2017 1 8 29263862 

  93. 93 Frietze K.M. Peabody D.S. Chackerian B. Engineering virus-like particles as vaccine platforms Curr. Opin. Virol. 18 2016 44 49 27039982 

  94. 94 B. Pulendran and R. Ahmed, “Immunological mechanisms of vaccination,” 2011. 

  95. 95 Lauring A.S. Jones J.O. Andino R. Rationalizing the development of live attenuated virus vaccines Nat. Biotechnol. 28 6 2010 573 579 20531338 

  96. 96 F. Amanat and F. Krammer, “SARS-CoV-2 Vaccines: Status Report,” Immunity, vol. 52, no. 4. Cell Press, pp. 583–589, Apr-2020. 

  97. 97 Bolles M. A Double-Inactivated Severe Acute Respiratory Syndrome Coronavirus Vaccine Provides Incomplete Protection in Mice and Induces Increased Eosinophilic Proinflammatory Pulmonary Response upon Challenge J. Virol. 85 23 2011 12201 12215 21937658 

  98. 98 Te Tseng C. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus PLoS ONE 7 4 2012 

  99. 99 J. Lee, S. Arun Kumar, Y. Y. Jhan, and C. J. Bishop, “Engineering DNA vaccines against infectious diseases,” Acta Biomaterialia, vol. 80. Acta Materialia Inc, pp. 31–47, Oct-2018. 

  100. 100 Q. Gao et al., “Development of an inactivated vaccine candidate for SARS-CoV-2,” Science (80-.)., vol. 369, no. 6499, pp. 77–81, Jul. 2020. 

  101. 101 Geall A.J. Mandl C.W. Ulmer J.B. RNA: the new revolution in nucleic acid vaccines Semin. Immunol. 25 2 2013 152 159 23735226 

  102. 102 Blakney A.K. McKay P.F. Yus B.I. Aldon Y. Shattock R.J. Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA Gene Ther. 26 9 2019 363 372 31300730 

  103. 103 C. Zhang, G. Maruggi, H. Shan, and J. Li, “Advances in mRNA vaccines for infectious diseases,” Frontiers in Immunology, vol. 10, no. MAR. Frontiers Media S.A., 2019. 

  104. 104 Jackson L.A. An mRNA Vaccine against SARS-CoV-2 — Preliminary Report N. Engl. J. Med. 2020 

  105. 105 G. Chauhan, M. J. Madou, S. Kalra, V. Chopra, D. Ghosh, and S. O. Martinez-chapa, “Nanotechnology for COVID-19 : Therapeutics,” 2020. 

  106. 106 Mulligan M.J. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults Nature 586 7830 2020 589 593 32785213 

  107. 107 Du L. He Y. Zhou Y. Liu S. Zheng B.J. Jiang S. The spike protein of SARS-CoV - A target for vaccine and therapeutic development Nat. Rev. Microbiol. 7 3 2009 226 236 19198616 

  108. 108 C. P. Karch and P. Burkhard, “Vaccine technologies: From whole organisms to rationally designed protein assemblies,” Biochemical Pharmacology, vol. 120. Elsevier Inc., pp. 1–14, Nov-2016. 

  109. 109 K. J. Ewer, T. Lambe, C. S. Rollier, A. J. Spencer, A. V. S. Hill, and L. Dorrell, “Viral vectors as vaccine platforms: From immunogenicity to impact,” Current Opinion in Immunology, vol. 41. Elsevier Ltd, pp. 47–54, Aug-2016. 

  110. 110 Capone S. Development of chimpanzee adenoviruses as vaccine vectors: Challenges and successes emerging from clinical trials Expert Review of Vaccines 12 4 2013 379 393 23560919 

  111. 111 Henao-Restrepo A.M. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!) Lancet 389 10068 2017 505 518 28017403 

  112. 112 N. van Doremalen et al., “A single dose of ChAdOx1 MERS provides protective immunity in rhesus macaques,” Sci. Adv., vol. 6, no. 24, Jun. 2020. 

  113. 113 Weiss C. The blockade of immune checkpoints in cancer immunotherapy Lancet 396 2 2020 206 210 

  114. 114 Zhu F.C. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial Lancet 395 10240 2020 1845 1854 32450106 

  115. 115 Plotkin S.A. Orenstein W.A. Offit P.A. Vaccines 6th ed. 2013 Elsevier Inc. 

  116. 116 L. S. Pickering LK, Baker CJ, Kimberlin DW, “Red Book ® 29th Edition,” 2012. 

  117. 117 Lindgren T. Ahlm C. Mohamed N. Evander M. Ljunggren H.-G. Björkström N.K. Longitudinal Analysis of the Human T Cell Response during Acute Hantavirus Infection J. Virol. 85 19 2011 10252 21795350 

  118. 118 Rubin L.G. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host Clin. Infect. Dis. 58 3 2014 309 318 24421306 

  119. 119 Spencer J.P. Trondsen Pawlowski R.H. Thomas S. Vaccine Adverse Events: Separating Myth from Reality Am. Fam. Physician 95 12 2017 786 794 28671426 

  120. 120 Haynes B.F. Prospects for a safe COVID-19 vaccine Sci. Transl. Med. 0948 November 2020 1 13 

  121. 121 Zellweger R.M. Wartel T.A. Marks F. Song M. Kim J.H. Vaccination against SARS-CoV-2 and disease enhancement–knowns and unknowns Expert Rev. Vaccines 19 8 2020 691 698 32838605 

  122. 122 J. A. Singh, “COVID-19 vaccine trials: Duty of care and standard of prevention considerations,” Vaccine, no. January. 2020. 

  123. 123 Mahase E. Covid-19: Johnson and Johnson vaccine trial is paused because of unexplained illness in participan BMJ 370 2020 m3525 

  124. 124 Weber J.S. Yang J.C. Atkins M.B. Disis M.L. Toxicities of immunotherapy for the practitioner J. Clin. Oncol. 33 18 2015 2092 2099 25918278 

  125. 125 Echeverry G. Fischer G.W. Mead E. Next Generation of Cancer Treatments: Chimeric Antigen Receptor T-Cell Therapy and Its Related Toxicities: A Review for Perioperative Physicians Anesth. Analg. 129 2 2019 434 441 31124841 

  126. 126 Citarella F. Facing SARS-CoV-2 outbreak in immunotherapy era Futur. Oncol. 16 20 2020 1475 1485 

  127. 127 Berner F. Association of Checkpoint Inhibitor-Induced Toxic Effects With Shared Cancer and Tissue Antigens in Non-Small Cell Lung Cancer JAMA Oncol. 5 7 Jul. 2019 1043 31021392 

  128. 128 Ribas A. Association of response to programmed death receptor 1 (PD-1) blockade with pembrolizumab (MK-3475) with an interferon-inflammatory immune gene signature J. Clin. Oncol. 33 15_suppl 2015 3001 

  129. 129 Huang C. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China Lancet (London, England) 395 10223 2020 497 506 31986264 

  130. 130 Velu V. Enhancing SIV-specific immunity in vivo by PD-1 blockade Nature 458 7235 2009 206 210 19078956 

  131. 131 Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy Nat. Rev. Cancer 12 4 2012 252 264 22437870 

  132. 132 Bharti R. Dey G. Mandal M. Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: A snapshot of IL-6 mediated involvement Cancer Lett. 375 1 2016 51 61 26945971 

  133. 133 Conti P. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies J. Biol. Regul. Homeost. Agents 34 2 2020 327 331 

  134. 134 Fox W.D. Antibody to vascular endothelial growth factor slows growth of an androgen-independent xenograft model of prostate cancer Clin. Cancer Res. 8 10 2002 3226 3231 12374693 

  135. 135 Ribas A. PD-1 Blockade Expands Intratumoral Memory T Cells Cancer Immunol. Res. 4 3 2016 194 203 26787823 

  136. 136 B. J. Moreira, E. J. Comparetti, I. Sampaio, L. M. Ferreira, P. M. Lins, and V. Zucolotto, “i v o r l a n o l,” 2020. 

  137. 137 C. Weiss et al., “Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic,” 2020. 

  138. 138 Hosangadi D. Enabling emergency mass vaccination: Innovations in manufacturing and administration during a pandemic Vaccine 38 26 2020 4167 4169 32381478 

  139. 139 N. Marasini, M. Skwarczynski, and I. Toth, “Oral delivery of nanoparticle-based vaccines,” Expert Review of Vaccines, vol. 13, no. 11. Expert Reviews Ltd., pp. 1361–1376, 01-Nov-2014. 

  140. 140 Kang S.H. Hong S.J. Lee Y.K. Cho S. Oral vaccine delivery for intestinal immunity-biological basis, barriers, delivery system, and M cell targeting Polymers 10 9 2018 MDPI AG 

  141. 141 R. Carlson, “Vaxart COVID-19 Oral Vaccine,” 2020. [Online]. Available: https://www.precisionvaccinations.com/vaccines/vaxart-covid-19-oral-vaccine. 

  142. 142 Y. R. Guo et al., “The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak- A n update on the status,” Military Medical Research, vol. 7, no. 1. BioMed Central Ltd., 13-Mar-2020. 

  143. 143 R. R. C. New, “Formulation technologies for oral vaccines,” Clinical and Experimental Immunology, vol. 198, no. 2. Blackwell Publishing Ltd, pp. 153–169, 01-Nov-2019. 

  144. 144 Licalsi C. Christensen T. Bennett J.V. Phillips E. Witham C. Dry powder inhalation as a potential delivery method for vaccines Vaccine 17 13–14 1999 1796 1803 10194842 

  145. 145 Foged C. Thermostable Subunit Vaccines for Pulmonary Delivery: How Close Are We? Curr. Pharm. Des. 22 17 2016 2561 2576 26831645 

  146. 146 Braunstein M. Hickey A.J. Ekins S. Why Wait? The Case for Treating Tuberculosis with Inhaled Drugs Pharm. Res. 36 12 2019 

  147. 147 Lu D. Hickey A.J. Pulmonary vaccine delivery Expert Rev. Vaccines 6 2 2007 213 226 17408371 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로