$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Machine learning prediction of stone-free success in patients with urinary stone after treatment of shock wave lithotripsy 원문보기

BMC urology, v.20 no.1, 2020년, pp.88 -   

Yang, Seung Woo ,  Hyon, Yun Kyong ,  Na, Hyun Seok ,  Jin, Long ,  Lee, Jae Geun ,  Park, Jong Mok ,  Lee, Ji Yong ,  Shin, Ju Hyun ,  Lim, Jae Sung ,  Na, Yong Gil ,  Jeon, Kiwan ,  Ha, Taeyoung ,  Kim, Jinbum ,  Song, Ki Hak

Abstract AI-Helper 아이콘AI-Helper

Background: The aims of this study were to determine the predictive value of decision support analysis for the shock wave lithotripsy (SWL) success rate and to analyze the data obtained from patients who underwent SWL to assess the factors influencing the outcome by using machine learning methods. ...

Keyword

참고문헌 (30)

  1. 1. Chaussy C Brendel W Schmiedt E Extracorporeally induced destruction of kidney stones by shock waves Lancet. 1980 2 8207 1265 1268 10.1016/S0140-6736(80)92335-1 6108446 

  2. 2. Ben Khalifa B Naouar S Gazzah W Salem B El Kamel R Predictive factors of extracorporeal shock wave lithotripsy success for urinary stones Tunis Med 2016 94 5 397 400 27801492 

  3. 3. Bres-Niewada E Dybowski B Radziszewski P Predicting stone composition before treatment - can it really drive clinical decisions? Cent European J Urol 2014 67 4 392 396 10.5173/ceju.2014.04.art15 

  4. 4. Zumstein V Betschart P Abt D Schmid HP Panje CM Putora PM Surgical management of urolithiasis - a systematic analysis of available guidelines BMC Urol 2018 18 1 25 10.1186/s12894-018-0332-9 29636048 

  5. 5. Cone EB Eisner BH Ursiny M Pareek G Cost-effectiveness comparison of renal calculi treated with ureteroscopic laser lithotripsy versus shockwave lithotripsy J Endourol 2014 28 6 639 643 10.1089/end.2013.0669 24444144 

  6. 6. Pareek G Armenakas NA Fracchia JA Hounsfield units on computerized tomography predict stone-free rates after extracorporeal shock wave lithotripsy J Urol 2003 169 5 1679 1681 10.1097/01.ju.0000055608.92069.3a 12686807 

  7. 7. Patel T Kozakowski K Hruby G Gupta M Skin to stone distance is an independent predictor of stone-free status following shockwave lithotripsy J Endourol 2009 23 9 1383 1385 10.1089/end.2009.0394 19694526 

  8. 8. Gupta NP Ansari MS Kesarvani P Kapoor A Mukhopadhyay S Role of computed tomography with no contrast medium enhancement in predicting the outcome of extracorporeal shock wave lithotripsy for urinary calculi BJU Int 2005 95 9 1285 1288 10.1111/j.1464-410X.2005.05520.x 15892818 

  9. 9. Obermeyer Z Emanuel EJ Predicting the future - big data, machine learning, and clinical medicine N Engl J Med 2016 375 13 1216 1219 10.1056/NEJMp1606181 27682033 

  10. 10. De Silva D Ranasinghe W Bandaragoda T Adikari A Mills N Iddamalgoda L Machine learning to support social media empowered patients in cancer care and cancer treatment decisions PLoS One 2018 13 10 e0205855 10.1371/journal.pone.0205855 30335805 

  11. 11. Kam HT, editor. Random decision forest. Proc of the 3rd Int'l Conf on Document Analysis and Recognition, Montreal, Canada, August; 1995. 

  12. 12. Chen T, Guestrin C, editors. Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining; 2016: ACM. 

  13. 13. Ke G, Wang T, Chen W, Ma W, Ye Q, Liu TY, et al. LightGBM: A highly efficient gradient boosting decision tree. Adv neural inf proces syst Advances in Neural Information Processing Systems. 2017;2017-December:3147?55. 

  14. 14. Kevin PM. Machine learning: a probabilistic perspective. MIT Press, Cambridge, UK; 2012. 

  15. 15. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning : data mining, inference, and prediction2017. 

  16. 16. Wiesenthal JD Ghiculete D DAH RJ Pace KT Evaluating the importance of mean stone density and skin-to-stone distance in predicting successful shock wave lithotripsy of renal and ureteric calculi Urol Res 2010 38 4 307 313 10.1007/s00240-010-0295-0 20625891 

  17. 17. Cho KS Jung HD Ham WS Chung DY Kang YJ Jang WS Optimal skin-to-stone distance is a positive predictor for successful outcomes in upper ureter calculi following extracorporeal shock wave lithotripsy: a Bayesian model averaging approach PLoS One 2015 10 12 e0144912 10.1371/journal.pone.0144912 26659086 

  18. 18. El-Nahas AR, El-Assmy AM, Mansour O, Sheir KZ. A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. Eur Urol 2007;51(6):1688?1693; discussion 93-4. 

  19. 19. Weld KJ, Montiglio C, Morris MS, Bush AC, Cespedes RD. Shock wave lithotripsy success for renal stones based on patient and stone computed tomography characteristics. Urology. 2007;70(6):1043?1046; discussion 6-7. 

  20. 20. Kacker R Zhao L Macejko A Thaxton CS Stern J Liu JJ Radiographic parameters on noncontrast computerized tomography predictive of shock wave lithotripsy success J Urol 2008 179 5 1866 1871 10.1016/j.juro.2008.01.038 18353389 

  21. 21. Eisner BH Kambadakone A Monga M Anderson JK Thoreson AA Lee H Computerized tomography magnified bone windows are superior to standard soft tissue windows for accurate measurement of stone size: an in vitro and clinical study J Urol 2009 181 4 1710 1715 10.1016/j.juro.2008.11.116 19230922 

  22. 22. Lee JY Kim JH Kang DH Chung DY Lee DH Do Jung H Stone heterogeneity index as the standard deviation of Hounsfield units: a novel predictor for shock-wave lithotripsy outcomes in ureter calculi Sci Rep 2016 6 23988 10.1038/srep23988 27035621 

  23. 23. Ahmed MH Ahmed HT Khalil AA Renal stone disease and obesity: what is important for urologists and nephrologists? Ren Fail 2012 34 10 1348 1354 10.3109/0886022X.2012.723777 23013150 

  24. 24. Hwang I Jung SI Kim KH Hwang EC Yu HS Kim SO Factors influencing the failure of extracorporeal shock wave lithotripsy with Piezolith 3000 in the management of solitary ureteral stone Urolithiasis. 2014 42 3 263 267 10.1007/s00240-014-0641-8 24496560 

  25. 25. Choi JW Song PH Kim HT Predictive factors of the outcome of extracorporeal shockwave lithotripsy for ureteral stones Korean J Urol 2012 53 6 424 430 10.4111/kju.2012.53.6.424 22741053 

  26. 26. Hatiboglu G Popeneciu V Kurosch M Huber J Pahernik S Pfitzenmaier J Prognostic variables for shockwave lithotripsy (SWL) treatment success: no impact of body mass index (BMI) using a third generation lithotripter BJU Int 2011 108 7 1192 1197 10.1111/j.1464-410X.2010.10007.x 21342413 

  27. 27. Janssen I Heymsfield SB Ross R Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability J Am Geriatr Soc 2002 50 5 889 896 10.1046/j.1532-5415.2002.50216.x 12028177 

  28. 28. Shen W Punyanitya M Wang Z Gallagher D St-Onge MP Albu J Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image J Appl Physiol (1985) 2004 97 6 2333 2338 10.1152/japplphysiol.00744.2004 15310748 

  29. 29. Cruz-Jentoft AJ Baeyens JP Bauer JM Boirie Y Cederholm T Landi F Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people Age Ageing 2010 39 4 412 423 10.1093/ageing/afq034 20392703 

  30. 30. Jones KI Doleman B Scott S Lund JN Williams JP Simple psoas cross-sectional area measurement is a quick and easy method to assess sarcopenia and predicts major surgical complications Color Dis 2015 17 1 O20 O26 10.1111/codi.12805 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로