최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기ACS nano, v.15 no.1, 2021년, pp.258 - 287
Kim, Weon-Guk (School of Electrical Engineering , KAIST , Daejeon 34141 , Republic of Korea) , Kim, Do-Wan (School of Electrical Engineering , KAIST , Daejeon 34141 , Republic of Korea) , Tcho, Il-Woong (School of Electrical Engineering , KAIST , Daejeon 34141 , Republic of Korea) , Kim, Jin-Ki (School of Electrical Engineering , KAIST , Daejeon 34141 , Republic of Korea) , Kim, Moon-Seok (School of Electrical Engineering , KAIST , Daejeon 34141 , Republic of Korea) , Choi, Yang-Kyu
With the rapid development of the Internet of Things (IoT), the number of sensors utilized for the IoT is expected to exceed 200 billion by 2025. Thus, sustainable energy supplies without the recharging and replacement of the charge storage device have become increasingly important. Among various en...
Wang, Z.L.. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Materials today, vol.20, no.2, 74-82.
Wang, Zhong Lin. Triboelectric Nanogenerator (TENG)-Sparking an Energy and Sensor Revolution. Advanced energy materials, vol.10, no.17, 2000137-.
Burhan, Muhammad, Rehman, Rana Asif, Khan, Bilal, Kim, Byung-Seo. IoT Elements, Layered Architectures and Security Issues: A Comprehensive Survey. Sensors, vol.18, no.9, 2796-.
Liu, Long, Shi, Qiongfeng, Ho, John S., Lee, Chengkuo. Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications. Nano energy, vol.66, 104167-.
Yoon, Sungjun, Carreon-Bautista, Salvador, Sánchez-Sinencio, Edgar. An Area Efficient Thermal Energy Harvester With Reconfigurable Capacitor Charge Pump for IoT Applications. IEEE transactions on circuits and systems. a publication of the IEEE Circuits and Systems Society. II, Express briefs, vol.65, no.12, 1974-1978.
Shafique, Kinza, Khawaja, Bilal A., Khurram, Muhammad Daniyal, Sibtain, Syed Maaz, Siddiqui, Yazir, Mustaqim, Muhammad, Chattha, Hassan Tariq, Yang, Xiaodong. Energy Harvesting Using a Low-Cost Rectenna for Internet of Things (IoT) Applications. IEEE access : practical research, open solutions, vol.6, 30932-30941.
Zhou, Yu Sheng, Li, Shengming, Niu, Simiao, Wang, Zhong Lin. Effect of contact- and sliding-mode electrification on nanoscale charge transfer for energy harvesting. Nano research, vol.9, no.12, 3705-3713.
Wang, Zhong Lin, Wang, Aurelia Chi. On the origin of contact-electrification. Materials today, vol.30, 34-51.
Wang, Zhong Lin. Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics – A recall on the original thoughts for coining these fields. Nano energy, vol.54, 477-483.
Wang, Zhong Lin. Entropy theory of distributed energy for internet of things. Nano energy, vol.58, 669-672.
Fan, F.R., Tian, Z.Q., Lin Wang, Z.. Flexible triboelectric generator. Nano energy, vol.1, no.2, 328-334.
Niu, Simiao, Wang, Sihong, Lin, Long, Liu, Ying, Zhou, Yu Sheng, Hu, Youfan, Wang, Zhong Lin. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy & environmental science, vol.6, no.12, 3576-3583.
Niu, Simiao, Liu, Ying, Wang, Sihong, Lin, Long, Zhou, Yu Sheng, Hu, Youfan, Wang, Zhong Lin. Theoretical Investigation and Structural Optimization of Single‐Electrode Triboelectric Nanogenerators. Advanced functional materials, vol.24, no.22, 3332-3340.
Niu, S., Wang, Z.L.. Theoretical systems of triboelectric nanogenerators. Nano energy, vol.14, 161-192.
Wang, Sihong, Lin, Long, Xie, Yannan, Jing, Qingshen, Niu, Simiao, Wang, Zhong Lin. Sliding-Triboelectric Nanogenerators Based on In-Plane Charge-Separation Mechanism. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.13, no.5, 2226-2233.
Xie, Yannan, Wang, Sihong, Lin, Long, Jing, Qingshen, Lin, Zong-Hong, Niu, Simiao, Wu, Zhengyun, Wang, Zhong Lin. Rotary Triboelectric Nanogenerator Based on a Hybridized Mechanism for Harvesting Wind Energy. ACS nano, vol.7, no.8, 7119-7125.
Jiang, Tao, Zhang, Li Min, Chen, Xiangyu, Han, Chang Bao, Tang, Wei, Zhang, Chi, Xu, Liang, Wang, Zhong Lin. Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy. ACS nano, vol.9, no.12, 12562-12572.
Pu, Xiong, Li, Linxuan, Liu, Mengmeng, Jiang, Chunyan, Du, Chunhua, Zhao, Zhenfu, Hu, Weiguo, Wang, Zhong Lin. Wearable Self‐Charging Power Textile Based on Flexible Yarn Supercapacitors and Fabric Nanogenerators. Advanced materials, vol.28, no.1, 98-105.
Seol, M.L., Woo, J.H., Jeon, S.B., Kim, D., Park, S.J., Hur, J., Choi, Y.K.. Vertically stacked thin triboelectric nanogenerator for wind energy harvesting. Nano energy, vol.14, 201-208.
Kim, Weon-Guk, Han, Joon-Kyu, Tcho, Il-Woong, Park, Jun-Young, Yu, Ji-Man, Choi, Yang-Kyu. Triboelectric nanogenerator for a repairable transistor with self-powered electro-thermal annealing. Nano energy, vol.76, 105000-.
Guo, Tong, Liu, Guoxu, Pang, Yaokun, Wu, Bo, Xi, Fengben, Zhao, Junqing, Bu, Tianzhao, Fu, Xianpeng, Li, Xinjian, Zhang, Chi, Wang, Zhong Lin. Compressible hexagonal-structured triboelectric nanogenerators for harvesting tire rotation energy. Extreme mechanics letters, vol.18, 1-8.
Hwang, Hee Jae, Lee, Younghoon, Lee, Choongyeop, Nam, Youngsuk, Park, Jinhyoung, Choi, Dukhyun, Kim, Dongseob. Mesoporous Highly-Deformable Composite Polymer for a Gapless Triboelectric Nanogenerator via a One-Step Metal Oxidation Process. Micromachines, vol.9, no.12, 656-.
Han, Kai, Luo, Jianjun, Feng, Yawei, Xu, Liang, Tang, Wei, Wang, Zhong Lin. Self-powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators. Energy & environmental science, vol.13, no.8, 2450-2458.
Han, Kai, Luo, Jianjun, Feng, Yawei, Lai, Qingsong, Bai, Yu, Tang, Wei, Wang, Zhong Lin. Wind-Driven Radial-Engine-Shaped Triboelectric Nanogenerators for Self-Powered Absorption and Degradation of NOX. ACS nano, vol.14, no.3, 2751-2759.
Wang, Ziming, An, Jie, Nie, Jinhui, Luo, Jianjun, Shao, Jiajia, Jiang, Tao, Chen, Baodong, Tang, Wei, Wang, Zhong Lin. A Self‐Powered Angle Sensor at Nanoradian‐Resolution for Robotic Arms and Personalized Medicare. Advanced materials, vol.32, no.32, 2001466-.
Lowell, J., Rose-Innes, A. C.. Contact electrification. Advances in physics, vol.29, no.6, 947-1023.
McCarty, Logan S., Whitesides, George M.. Electrostatic Charging Due to Separation of Ions at Interfaces: Contact Electrification of Ionic Electrets. Angewandte Chemie. international edition, vol.47, no.12, 2188-2207.
Baytekin, H. T., Patashinski, A. Z., Branicki, M., Baytekin, B., Soh, S., Grzybowski, B. A.. The Mosaic of Surface Charge in Contact Electrification. Science, vol.333, no.6040, 308-312.
Wang, Shuhua, Mu, Xiaojing, Yang, Ya, Sun, Chengliang, Gu, Alex Yuandong, Wang, Zhong Lin. Flow‐Driven Triboelectric Generator for Directly Powering a Wireless Sensor Node. Advanced materials, vol.27, no.2, 240-248.
Wang, Xue, Wang, Shuhua, Yang, Ya, Wang, Zhong Lin. Hybridized Electromagnetic–Triboelectric Nanogenerator for Scavenging Air-Flow Energy to Sustainably Power Temperature Sensors. ACS nano, vol.9, no.4, 4553-4562.
Cheng, Jia, Ding, Wenbo, Zi, Yunlong, Lu, Yijia, Ji, Linhong, Liu, Fan, Wu, Changsheng, Wang, Zhong Lin. Triboelectric microplasma powered by mechanical stimuli. Nature communications, vol.9, no.1, 3733-.
Li, Anyin, Zi, Yunlong, Guo, Hengyu, Wang, Zhong Lin, Fernández, Facundo M.. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nature nanotechnology, vol.12, no.5, 481-487.
Xi, F., Pang, Y., Li, W., Jiang, T., Zhang, L., Guo, T., Liu, G., Zhang, C., Wang, Z.L.. Universal power management strategy for triboelectric nanogenerator. Nano energy, vol.37, 168-176.
Lin, Shiquan, Xu, Liang, Chi Wang, Aurelia, Wang, Zhong Lin. Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer. Nature communications, vol.11, no.1, 399-.
Ducati, Telma R. D., Simões, Luís H., Galembeck, Fernando. Charge Partitioning at Gas−Solid Interfaces: Humidity Causes Electricity Buildup on Metals. Langmuir : the ACS journal of surfaces and colloids, vol.26, no.17, 13763-13766.
Burgo, T.A.L., Galembeck, F., Pollack, G.H.. Where is water in the triboelectric series?. Journal of electrostatics, vol.80, 30-33.
Zheng, Qiang, Zhang, Hao, Shi, Bojing, Xue, Xiang, Liu, Zhuo, Jin, Yiming, Ma, Ye, Zou, Yang, Wang, Xinxin, An, Zhao, Tang, Wei, Zhang, Wei, Yang, Fan, Liu, Yang, Lang, Xilong, Xu, Zhiyun, Li, Zhou, Wang, Zhong Lin. In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator. ACS nano, vol.10, no.7, 6510-6518.
Fan, Xing, Chen, Jun, Yang, Jin, Bai, Peng, Li, Zhaoling, Wang, Zhong Lin. Ultrathin, Rollable, Paper-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting and Self-Powered Sound Recording. ACS nano, vol.9, no.4, 4236-4243.
Fatma, Bushara, Bhunia, Ritamay, Gupta, Shashikant, Verma, Amit, Verma, Vivek, Garg, Ashish. Maghemite/Polyvinylidene Fluoride Nanocomposite for Transparent, Flexible Triboelectric Nanogenerator and Noncontact Magneto-Triboelectric Nanogenerator. ACS sustainable chemistry et engineering, vol.7, no.17, 14856-14866.
Wu, Changsheng, Wang, Aurelia C., Ding, Wenbo, Guo, Hengyu, Wang, Zhong Lin. Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Advanced energy materials, vol.9, no.1, 1802906-.
Tian, Jingwen, Chen, Xiangyu, Wang, Zhong Lin. Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology, vol.31, no.24, 242001-.
Wang, Zhong Lin, Jiang, Tao, Xu, Liang. Toward the blue energy dream by triboelectric nanogenerator networks. Nano energy, vol.39, 9-23.
Wang, Zhong Lin. Triboelectric nanogenerators as new energy technology and self-powered sensors – Principles, problems and perspectives. Faraday discussions, vol.176, 447-458.
Pan, Shuaihang, Zhang, Zhinan. Fundamental theories and basic principles of triboelectric effect: A review. Friction, vol.7, no.1, 2-17.
Xie, Xinkai, Chen, Xiaoping, Zhao, Chun, Liu, Yina, Sun, Xuhui, Zhao, Cezhou, Wen, Zhen. Intermediate layer for enhanced triboelectric nanogenerator. Nano energy, vol.79, 105439-.
Wang, Yang, Yang, Ya, Wang, Zhong Lin. Triboelectric nanogenerators as flexible power sources. Npj flexible electronics, vol.1, no.1, 10-.
Lee, Bo-Yeon, Kim, Dong Hyun, Park, Jiseul, Park, Kwi-Il, Lee, Keon Jae, Jeong, Chang Kyu. Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. Science and technology of advanced materials, vol.20, no.1, 758-773.
Yu, Y., Wang, X.. Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme mechanics letters, vol.9, no.3, 514-530.
Wang, Sihong, Lin, Long, Wang, Zhong Lin. Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.12, no.12, 6339-6346.
Encyclopedia of Inorganic and Bioinorganic Chemistry Gooding D. M. 1 2014
Pan, Shuaihang, Zhang, Zhinan. Triboelectric effect: A new perspective on electron transfer process. Journal of applied physics, vol.122, no.14, 144302-.
Williams, M.W.. Triboelectric charging in metal-polymer contacts - How to distinguish between electron and material transfer mechanisms. Journal of electrostatics, vol.71, no.1, 53-54.
Lacks, Daniel J, Mohan Sankaran, R. Contact electrification of insulating materials. Journal of physics. D, applied physics, vol.44, no.45, 453001-.
Williams, Meurig W.. Triboelectric charging of insulating polymers-some new perspectives. AIP advances, vol.2, no.1, 010701-.
Li, Dianlun, Wu, Chaoxing, Ruan, Lu, Wang, Jiaxin, Qiu, Zhirong, Wang, Kun, Liu, Ye, Zhang, Yufei, Guo, Tailiang, Lin, Jintang, Kim, Tae Whan. Electron-transfer mechanisms for confirmation of contact-electrification in ZnO/polyimide-based triboelectric nanogenerators. Nano energy, vol.75, 104818-.
KwakS. S. Kwak and S. M. Kim contributed equally to this work., Sung Soo, Kim, Seong Min, Ryu, Hanjun, Kim, Jihye, Khan, Usman, Yoon, Hong-Joon, Jeong, Yo Han, Kim, Sang-Woo. Butylated melamine formaldehyde as a durable and highly positive friction layer for stable, high output triboelectric nanogenerators. Energy & environmental science, vol.12, no.10, 3156-3163.
Lee, Jae Won, Jung, Sungwoo, Lee, Tae Won, Jo, Jinhyeong, Chae, Hee Young, Choi, Keunsu, Kim, Jae Joon, Lee, Jun Hee, Yang, Changduk, Baik, Jeong Min. High‐Output Triboelectric Nanogenerator Based on Dual Inductive and Resonance Effects‐Controlled Highly Transparent Polyimide for Self‐Powered Sensor Network Systems. Advanced energy materials, vol.9, no.36, 1901987-.
O’Grady, P. F. Thales of Miletus: The Beginnings of Western Science and Philosophy , 1st ed. Routledge: London, 2002; pp 113-114.
Baytekin, H. Tarik, Baytekin, Bilge, Hermans, Thomas M., Kowalczyk, Bartlomiej, Grzybowski, Bartosz A.. Control of Surface Charges by Radicals as a Principle of Antistatic Polymers Protecting Electronic Circuitry. Science, vol.341, no.6152, 1368-1371.
Lacks, Daniel J.. The Unpredictability of Electrostatic Charging. Angewandte Chemie. international edition, vol.51, no.28, 6822-6823.
Wang, Andrew E., Greber, Isaac, Angus, John C.. Contact charge transfer between inorganic dielectric solids of different surface roughness. Journal of electrostatics, vol.101, 103359-.
Diaz, A.F., Felix-Navarro, R.M.. A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. Journal of electrostatics, vol.62, no.4, 277-290.
Waitukaitis, Scott R., Lee, Victor, Pierson, James M., Forman, Steven L., Jaeger, Heinrich M.. Size-Dependent Same-Material Tribocharging in Insulating Grains. Physical review letters, vol.112, no.21, 218001-.
Wu, Jun, Wang, Xiaoli, Li, Hanqing, Wang, Feng, Yang, Weixu, Hu, Yanqiang. Insights into the mechanism of metal-polymer contact electrification for triboelectric nanogenerator via first-principles investigations. Nano energy, vol.48, 607-616.
Wu, Jun, Wang, Xiaoli, Li, Hanqing, Wang, Feng, Hu, Yanqiang. First-principles investigations on the contact electrification mechanism between metal and amorphous polymers for triboelectric nanogenerators. Nano energy, vol.63, 103864-.
Liu, Chongyang, Bard, Allen J.. Electrostatic electrochemistry at insulators. Nature materials, vol.7, no.6, 505-509.
Liu, Chong-yang, Bard, Allen J.. Chemical Redox Reactions Induced by Cryptoelectrons on a PMMA Surface. Journal of the American Chemical Society, vol.131, no.18, 6397-6401.
Liu, C.y., Bard, A.J.. Electrostatic electrochemistry: Nylon and polyethylene systems. Chemical physics letters, vol.485, no.1, 231-234.
Piperno, Silvia, Cohen, Hagai, Bendikov, Tatyana, Lahav, Meir, Lubomirsky, Igor. The Absence of Redox Reactions for Palladium(II) and Copper(II) on Electrostatically Charged Teflon: Relevance to the Concept of “Cryptoelectrons”. Angewandte Chemie. international edition, vol.50, no.25, 5654-5657.
Piperno, Silvia, Cohen, Hagai, Bendikov, Tatyana, Lahav, Meir, Lubomirsky, Igor. The role played by oxygen plasma on Teflon: relevance to the concept of “cryptoelectrons”. Physical chemistry chemical physics : PCCP, vol.14, no.31, 11185-11186.
Piperno, Silvia, Cohen, Hagai, Bendikov, Tatyana, Lahav, Meir, Lubomirsky, Igor. Absorption vs. redox reduction of Pd2+ and Cu2+ on triboelectrically and naturally charged dielectric polymers. Physical chemistry chemical physics : PCCP, vol.14, no.16, 5551-5557.
Baytekin, Bilge, Baytekin, H. Tarik, Grzybowski, Bartosz A.. What Really Drives Chemical Reactions on Contact Charged Surfaces?. Journal of the American Chemical Society, vol.134, no.17, 7223-7226.
Gonzalez, J. F., Somoza, A. M., Palacios-Lidón, E.. Charge distribution from SKPM images. Physical chemistry chemical physics : PCCP, vol.19, no.40, 27299-27304.
Burgo, T.A.d.L., Rezende, C.A., Bertazzo, S., Galembeck, A., Galembeck, F.. Electric potential decay on polyethylene: Role of atmospheric water on electric charge build-up and dissipation. Journal of electrostatics, vol.69, no.4, 401-409.
Knorr, Nikolaus. Squeezing out hydrated protons: low-frictional-energy triboelectric insulator charging on a microscopic scale. AIP advances, vol.1, no.2, 022119-.
Terris, B. D., Stern, J. E., Rugar, D., Mamin, H. J.. Contact electrification using force microscopy. Physical review letters, vol.63, no.24, 2669-2672.
Li, Shengming, Zhou, Yusheng, Zi, Yunlong, Zhang, Gong, Wang, Zhong Lin. Excluding Contact Electrification in Surface Potential Measurement Using Kelvin Probe Force Microscopy. ACS nano, vol.10, no.2, 2528-2535.
Lin, Shiquan, Xu, Liang, Xu, Cheng, Chen, Xiangyu, Wang, Aurelia C., Zhang, Binbin, Lin, Pei, Yang, Ya, Zhao, Huabo, Wang, Zhong Lin. Electron Transfer in Nanoscale Contact Electrification: Effect of Temperature in the Metal–Dielectric Case. Advanced materials, vol.31, no.17, 1808197-.
Lin, Shiquan, Xu, Liang, Zhu, Laipan, Chen, Xiangyu, Wang, Zhong Lin. Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect. Advanced materials, vol.31, no.27, 1901418-.
Lin, Shiquan, Xu, Liang, Tang, Wei, Chen, Xiangyu, Wang, Zhong Lin. Electron transfer in nano-scale contact electrification: Atmosphere effect on the surface states of dielectrics. Nano energy, vol.65, 103956-.
Mizes, H. A., Conwell, E. M., Salamida, D. P.. Direct observation of ion transfer in contact charging between a metal and a polymer. Applied physics letters, vol.56, no.16, 1597-1599.
Pence, S., Novotny, V. J., Diaz, A. F.. Effect of Surface Moisture on Contact Charge of Polymers Containing Ions. Langmuir : the ACS journal of surfaces and colloids, vol.10, no.2, 592-596.
Awakuni, Y, Calderwood, J H. Water vapour adsorption and surface conductivity in solids. Journal of physics. D, applied physics, vol.5, no.5, 1038-1045.
Zhang, Yanzhen, Pähtz, Thomas, Liu, Yonghong, Wang, Xiaolong, Zhang, Rui, Shen, Yang, Ji, Renjie, Cai, Baoping. Electric Field and Humidity Trigger Contact Electrification. Physical review. X, vol.5, no.1,
Lacks, Daniel J., Shinbrot, Troy. Long-standing and unresolved issues in triboelectric charging. Nature reviews. Chemistry, vol.3, no.8, 465-476.
Baytekin, H. Tarik, Baytekin, Bilge, Soh, Siowling, Grzybowski, Bartosz A.. Is Water Necessary for Contact Electrification?. Angewandte Chemie. international edition, vol.50, no.30, 6766-6770.
Homewood, K.P.. Do 'dirty' surfaces matter in contact electrification experiments?. Journal of electrostatics, vol.10, 299-304.
Wang, Jie, Wu, Changsheng, Dai, Yejing, Zhao, Zhihao, Wang, Aurelia, Zhang, Tiejun, Wang, Zhong Lin. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nature communications, vol.8, no.1, 88-.
Lowell, J. The role of material transfer in contact electrification. Journal of physics. D, applied physics, vol.10, no.17, L233-L235.
Salaneck, W. R., Paton, A., Clark, D. T.. Double mass transfer during polymer-polymer contacts. Journal of applied physics, vol.47, no.1, 144-147.
Yun, Changsuk, Lee, Seung-Hoon, Ryu, Jehyeok, Park, Kyungsoon, Jang, Jae-Won, Kwak, Juhyoun, Hwang, Seongpil. Can Static Electricity on a Conductor Drive a Redox Reaction: Contact Electrification of Au by Polydimethylsiloxane, Charge Inversion in Water, and Redox Reaction. Journal of the American Chemical Society, vol.140, no.44, 14687-14695.
Burgo, Thiago A. L., Ducati, Telma R. D., Francisco, Kelly R., Clinckspoor, Karl J., Galembeck, Fernando, Galembeck, Sergio E.. Triboelectricity: Macroscopic Charge Patterns Formed by Self-Arraying Ions on Polymer Surfaces. Langmuir : the ACS journal of surfaces and colloids, vol.28, no.19, 7407-7416.
Apodaca, Mario M., Wesson, Paul J., Bishop, Kyle J. M., Ratner, Mark A., Grzybowski, Bartosz A.. Contact Electrification between Identical Materials. Angewandte Chemie. international edition, vol.49, no.5, 946-949.
Baytekin, H. Tarik, Baytekin, Bilge, Incorvati, Jared T., Grzybowski, Bartosz A.. Material Transfer and Polarity Reversal in Contact Charging. Angewandte Chemie. international edition, vol.51, no.20, 4843-4847.
Pandey, Rakesh K., Kakehashi, Hiroto, Nakanishi, Hideyuki, Soh, Siowling. Correlating Material Transfer and Charge Transfer in Contact Electrification. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.122, no.28, 16154-16160.
Šutka, Andris, Mālnieks, Kaspars, Lapčinskis, Linards, Kaufelde, Paula, Linarts, Artis, Bērziņa, Astrīda, Zābels, Roberts, Jurķāns, Vilnis, Gorņevs, Ilgvars, Blūms, Juris, Knite, Māris. The role of intermolecular forces in contact electrification on polymer surfaces and triboelectric nanogenerators. Energy & environmental science, vol.12, no.8, 2417-2421.
Lapčinskis, Linards, Mālnieks, Kaspars, Blūms, Juris, Knite, Māris, Oras, Sven, Käämbre, Tanel, Vlassov, Sergei, Antsov, Mikk, Timusk, Martin, Šutka, Andris. The Adhesion‐Enhanced Contact Electrification and Efficiency of Triboelectric Nanogenerators. Macromolecular materials and engineering, vol.305, no.1, 1900638-.
Gong, Jianliang, Xu, Bingang, Yang, Yujue, Wu, Mengjie, Yang, Bao. An Adhesive Surface Enables High‐Performance Mechanical Energy Harvesting with Unique Frequency‐Insensitive and Pressure‐Enhanced Output Characteristics. Advanced materials, vol.32, no.14, 1907948-.
Sow, Mamadou, Widenor, Ross, Kumar, Ajay, Lee, Seung Whan, Lacks, Daniel J., Sankaran, R. Mohan. Strain‐Induced Reversal of Charge Transfer in Contact Electrification. Angewandte Chemie. international edition, vol.51, no.11, 2695-2697.
Sow, M., Lacks, D.J., Sankaran, R.M.. Effects of material strain on triboelectric charging: Influence of material properties. Journal of electrostatics, vol.71, no.3, 396-399.
Sow, Mamadou, Lacks, Daniel J., Mohan Sankaran, R.. Dependence of contact electrification on the magnitude of strain in polymeric materials. Journal of applied physics, vol.112, no.8, 084909-.
Sakaguchi, Masato, Miwa, Youhei, Hara, Shigeo, Sugino, Yusuke, Yamamoto, Katsuhiro, Shimada, Shigetaka. Triboelectricity in polymers: effects of the ionic nature of carbon–carbon bonds in the polymer main chain on charge due to yield of mechano-anions produced by heterogeneous scission of the carbon–carbon bond by mechanical fracture. Journal of electrostatics, vol.62, no.1, 35-50.
Sohma, J.. Mechanochemistry of polymers. Progress in polymer science, vol.14, no.4, 451-596.
Sakaguchi, Masato, Kinpara, Hiromu, Hori, Yasuro, Shimada, Shigetaka, Kashiwabara, Hisatsugu. Mechano ions produced by mechanical fracture of solid polymer. 5. Cationic polymerization of isobutyl vinyl ether initiated by the mechano cation of poly(vinylidene fluoride). Macromolecules, vol.22, no.3, 1277-1280.
Sakaguchi, Masato, Sohma, Junkichi. Copolymerizations initiated by mechano‐radicals on particle surfaces of poly(tetrafluoroethylene). Journal of applied polymer science, vol.22, no.10, 2915-2924.
Baytekin, H. Tarik, Baytekin, Bilge, Grzybowski, Bartosz A.. Mechanoradicals Created in “Polymeric Sponges” Drive Reactions in Aqueous Media. Angewandte Chemie. international edition, vol.51, no.15, 3596-3600.
Gil, Phwey S., Lacks, Daniel J.. Humidity transforms immobile surface charges into mobile charges during triboelectric charging. Physical chemistry chemical physics : PCCP, vol.21, no.25, 13821-13825.
HENNIKER, J.. Triboelectricity in Polymers. Nature, vol.196, no.4853, 474-474.
Mazur, Tomasz, Grzybowski, Bartosz A.. Theoretical basis for the stabilization of charges by radicals on electrified polymers. Chemical science, vol.8, no.3, 2025-2032.
Sakaguchi, M., Makino, M., Ohura, T., Iwata, T.. Contact electrification of polymers due to electron transfer among mechano anions, mechano cations and mechano radicals. Journal of electrostatics, vol.72, no.5, 412-416.
Yoshida, Mikio, Ii, Naoto, Shimosaka, Atsuko, Shirakawa, Yoshiyuki, Hidaka, Jusuke. Experimental and theoretical approaches to charging behavior of polymer particles. Chemical engineering science, vol.61, no.7, 2239-2248.
Wang, Linfeng, Dong, Yi, Tao, Jing, Ma, Tianbao, Dai, Zhendong. Study of the mechanisms of contact electrification and charge transfer between polytetrafluoroethylene and metals. Journal of physics. D, applied physics, vol.53, no.28, 285302-.
Kim, Daewon, Jeon, Seung-Bae, Kim, Ju Young, Seol, Myeong-Lok, Kim, Sang Ouk, Choi, Yang-Kyu. High-performance nanopattern triboelectric generator by block copolymer lithography. Nano energy, vol.12, 331-338.
Park, Sang-Jae, Seol, Myeong-Lok, Jeon, Seung-Bae, Kim, Daewon, Lee, Dongil, Choi, Yang-Kyu. Surface Engineering of Triboelectric Nanogenerator with an Electrodeposited Gold Nanoflower Structure. Scientific reports, vol.5, 13866-.
Kim, Weon-Guk, Tcho, Il-Woong, Kim, Daewon, Jeon, Seung-Bae, Park, Sang-Jae, Seol, Myeong-Lok, Choi, Yang-Kyu. Performance-enhanced triboelectric nanogenerator using the glass transition of polystyrene. Nano energy, vol.27, 306-312.
Park, Sang-Jae, Seol, Myeong-Lok, Kim, Daewon, Jeon, Seung-Bae, Choi, Yang-Kyu. Triboelectric nanogenerator with nanostructured metal surface using water-assisted oxidation. Nano energy, vol.21, 258-264.
Lin, Zong-Hong, Xie, Yannan, Yang, Ya, Wang, Sihong, Zhu, Guang, Wang, Zhong Lin. Enhanced Triboelectric Nanogenerators and Triboelectric Nanosensor Using Chemically Modified TiO2 Nanomaterials. ACS nano, vol.7, no.5, 4554-4560.
Wang, Jie, Li, Shengming, Yi, Fang, Zi, Yunlong, Lin, Jun, Wang, Xiaofeng, Xu, Youlong, Wang, Zhong Lin. Sustainably powering wearable electronics solely by biomechanical energy. Nature communications, vol.7, 12744-.
Tang, Wei, Jiang, Tao, Fan, Feng Ru, Yu, Ai Fang, Zhang, Chi, Cao, Xia, Wang, Zhong Lin. Liquid‐Metal Electrode for High‐Performance Triboelectric Nanogenerator at an Instantaneous Energy Conversion Efficiency of 70.6%. Advanced functional materials, vol.25, no.24, 3718-3725.
Shin, Sung-Ho, Bae, Young Eun, Moon, Hyun Kyung, Kim, Jungkil, Choi, Suk-Ho, Kim, Yongho, Yoon, Hyo Jae, Lee, Min Hyung, Nah, Junghyo. Formation of Triboelectric Series via Atomic-Level Surface Functionalization for Triboelectric Energy Harvesting. ACS nano, vol.11, no.6, 6131-6138.
Kim, Daewon, Kim, Weon-Guk, Jin, Ik Kyeong, Park, Hongkeun, Im, Sung-Gap, Choi, Yang-Kyu. A study of the charge distribution and output characteristics of an ultra-thin tribo-dielectric layer. Nano energy, vol.62, 458-464.
Cui, Nuanyang, Gu, Long, Lei, Yimin, Liu, Jinmei, Qin, Yong, Ma, Xiaohua, Hao, Yue, Wang, Zhong Lin. Dynamic Behavior of the Triboelectric Charges and Structural Optimization of the Friction Layer for a Triboelectric Nanogenerator. ACS nano, vol.10, no.6, 6131-6138.
Zhang, Hemin, Marty, Frédéric, Xia, Xin, Zi, Yunlong, Bourouina, Tarik, Galayko, Dimitri, Basset, Philippe. Employing a MEMS plasma switch for conditioning high-voltage kinetic energy harvesters. Nature communications, vol.11, no.1, 3221-.
Qin, Huaifang, Cheng, Gang, Zi, Yunlong, Gu, Guangqin, Zhang, Bao, Shang, Wanyu, Yang, Feng, Yang, Junjie, Du, Zuliang, Wang, Zhong Lin. High Energy Storage Efficiency Triboelectric Nanogenerators with Unidirectional Switches and Passive Power Management Circuits. Advanced functional materials, vol.28, no.51, 1805216-.
Xu, Liang, Bu, Tian Zhao, Yang, Xiao Dan, Zhang, Chi, Wang, Zhong Lin. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano energy, vol.49, 625-633.
Bai, Yu, Xu, Liang, Lin, Shiquan, Luo, Jianjun, Qin, Huaifang, Han, Kai, Wang, Zhong Lin. Charge Pumping Strategy for Rotation and Sliding Type Triboelectric Nanogenerators. Advanced energy materials, vol.10, no.21, 2000605-.
Liu, Wenlin, Wang, Zhao, Wang, Gao, Liu, Guanlin, Chen, Jie, Pu, Xianjie, Xi, Yi, Wang, Xue, Guo, Hengyu, Hu, Chenguo, Wang, Zhong Lin. Integrated charge excitation triboelectric nanogenerator. Nature communications, vol.10, no.1, 1426-.
Wang, Huamei, Xu, Liang, Bai, Yu, Wang, Zhong Lin. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nature communications, vol.11, no.1, 4203-.
Liu, Yike, Liu, Wenlin, Wang, Zhao, He, Wencong, Tang, Qian, Xi, Yi, Wang, Xue, Guo, Hengyu, Hu, Chenguo. Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nature communications, vol.11, no.1, 1599-.
Chen, Jie, Guo, Hengyu, Hu, Chenguo, Wang, Zhong Lin. Robust Triboelectric Nanogenerator Achieved by Centrifugal Force Induced Automatic Working Mode Transition. Advanced energy materials, vol.10, no.23, 2000886-.
Tcho, Il-Woong, Jeon, Seung-Bae, Park, Sang-Jae, Kim, Weon-Guk, Jin, Ik Kyeong, Han, Joon-Kyu, Kim, Daewon, Choi, Yang-Kyu. Disk-based triboelectric nanogenerator operated by rotational force converted from linear force by a gear system. Nano energy, vol.50, 489-496.
Xie, Yannan, Wang, Sihong, Niu, Simiao, Lin, Long, Jing, Qingshen, Yang, Jin, Wu, Zhengyun, Wang, Zhong Lin. Grating‐Structured Freestanding Triboelectric‐Layer Nanogenerator for Harvesting Mechanical Energy at 85% Total Conversion Efficiency. Advanced materials, vol.26, no.38, 6599-6607.
Niu, Simiao, Wang, Xiaofeng, Yi, Fang, Zhou, Yu Sheng, Wang, Zhong Lin. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nature communications, vol.6, 8975-.
Liu, Wenlin, Wang, Zhao, Wang, Gao, Zeng, Qixuan, He, Wencong, Liu, Liyu, Wang, Xue, Xi, Yi, Guo, Hengyu, Hu, Chenguo, Wang, Zhong Lin. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nature communications, vol.11, no.1, 1883-.
Pandolfo, A.G., Hollenkamp, A.F.. Carbon properties and their role in supercapacitors. Journal of power sources, vol.157, no.1, 11-27.
Gonzalez, A., Goikolea, E., Barrena, J.A., Mysyk, R.. Review on supercapacitors: Technologies and materials. Renewable & sustainable energy reviews, vol.58, 1189-1206.
Zhong, Cheng, Deng, Yida, Hu, Wenbin, Qiao, Jinli, Zhang, Lei, Zhang, Jiujun. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society reviews, vol.44, no.21, 7484-7539.
Huang, T., Wang, C., Yu, H., Wang, H., Zhang, Q., Zhu, M.. Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano energy, vol.14, 226-235.
Yang, Weiqing, Chen, Jun, Zhu, Guang, Yang, Jin, Bai, Peng, Su, Yuanjie, Jing, Qingsheng, Cao, Xia, Wang, Zhong Lin. Harvesting Energy from the Natural Vibration of Human Walking. ACS nano, vol.7, no.12, 11317-11324.
Yi, Fang, Lin, Long, Niu, Simiao, Yang, Po Kang, Wang, Zhaona, Chen, Jun, Zhou, Yusheng, Zi, Yunlong, Wang, Jie, Liao, Qingliang, Zhang, Yue, Wang, Zhong Lin. Stretchable‐Rubber‐Based Triboelectric Nanogenerator and Its Application as Self‐Powered Body Motion Sensors. Advanced functional materials, vol.25, no.24, 3688-3696.
Zhang, Steven L., Lai, Ying‐Chih, He, Xu, Liu, Ruiyuan, Zi, Yunlong, Wang, Zhong Lin. Auxetic Foam‐Based Contact‐Mode Triboelectric Nanogenerator with Highly Sensitive Self‐Powered Strain Sensing Capabilities to Monitor Human Body Movement. Advanced functional materials, vol.27, no.25, 1606695-.
Cui, Chunmei, Wang, Xingzhao, Yi, Zhiran, Yang, Bin, Wang, Xiaolin, Chen, Xiang, Liu, Jingquan, Yang, Chunsheng. Flexible Single-Electrode Triboelectric Nanogenerator and Body Moving Sensor Based on Porous Na2CO3/Polydimethylsiloxane Film. ACS applied materials & interfaces, vol.10, no.4, 3652-3659.
Xia, Kequan, Zhu, Zhiyuan, Zhang, Hongze, Du, Chaolin, Xu, Zhiwei, Wang, Rongji. Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion. Nano energy, vol.50, 571-580.
Seung, Wanchul, Gupta, Manoj Kumar, Lee, Keun Young, Shin, Kyung-Sik, Lee, Ju-Hyuck, Kim, Tae Yun, Kim, Sanghyun, Lin, Jianjian, Kim, Jung Ho, Kim, Sang-Woo. Nanopatterned Textile-Based Wearable Triboelectric Nanogenerator. ACS nano, vol.9, no.4, 3501-3509.
Dong, Kai, Deng, Jianan, Zi, Yunlong, Wang, Yi‐Cheng, Xu, Cheng, Zou, Haiyang, Ding, Wenbo, Dai, Yejing, Gu, Bohong, Sun, Baozhong, Wang, Zhong Lin. 3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self‐Powered Active Motion Sensors. Advanced materials, vol.29, no.38, 1702648-.
Wang, Jie, Li, Xiuhan, Zi, Yunlong, Wang, Sihong, Li, Zhaoling, Zheng, Li, Yi, Fang, Li, Shengming, Wang, Zhong Lin. A Flexible Fiber‐Based Supercapacitor–Triboelectric‐Nanogenerator Power System for Wearable Electronics. Advanced materials, vol.27, no.33, 4830-4836.
Yang, Yanqin, Sun, Na, Wen, Zhen, Cheng, Ping, Zheng, Hechuang, Shao, Huiyun, Xia, Yujian, Chen, Chen, Lan, Huiwen, Xie, Xinkai, Zhou, Changjie, Zhong, Jun, Sun, Xuhui, Lee, Shuit-Tong. Liquid-Metal-Based Super-Stretchable and Structure-Designable Triboelectric Nanogenerator for Wearable Electronics. ACS nano, vol.12, no.2, 2027-2034.
Yang, Ya, Zhu, Guang, Zhang, Hulin, Chen, Jun, Zhong, Xiandai, Lin, Zong-Hong, Su, Yuanjie, Bai, Peng, Wen, Xiaonan, Wang, Zhong Lin. Triboelectric Nanogenerator for Harvesting Wind Energy and as Self-Powered Wind Vector Sensor System. ACS nano, vol.7, no.10, 9461-9468.
Meng, Xian Song, Zhu, Guang, Wang, Zhong Lin. Robust Thin-Film Generator Based on Segmented Contact-Electrification for Harvesting Wind Energy. ACS applied materials & interfaces, vol.6, no.11, 8011-8016.
Wang, Shuhua, Wang, Xue, Wang, Zhong Lin, Yang, Ya. Efficient Scavenging of Solar and Wind Energies in a Smart City. ACS nano, vol.10, no.6, 5696-5700.
Zhu, Guang, Chen, Jun, Zhang, Tiejun, Jing, Qingshen, Wang, Zhong Lin. Radial-arrayed rotary electrification for high performance triboelectric generator. Nature communications, vol.5, 3426-.
Zhang, Hulin, Wang, Jie, Xie, Yuhang, Yao, Guang, Yan, Zhuocheng, Huang, Long, Chen, Sihong, Pan, Taisong, Wang, Liping, Su, Yuanjie, Yang, Weiqing, Lin, Yuan. Self-Powered, Wireless, Remote Meteorologic Monitoring Based on Triboelectric Nanogenerator Operated by Scavenging Wind Energy. ACS applied materials & interfaces, vol.8, no.48, 32649-32654.
Dudem, Bhaskar, Huynh, Nghia Dinh, Kim, Wook, Kim, Dong Hyun, Hwang, Hee Jae, Choi, Dukhyun, Yu, Jae Su. Nanopillar-array architectured PDMS-based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting. Nano energy, vol.42, 269-281.
Zhang, Binbin, Chen, Jun, Jin, Long, Deng, Weili, Zhang, Lei, Zhang, Haitao, Zhu, Minhao, Yang, Weiqing, Wang, Zhong Lin. Rotating-Disk-Based Hybridized Electromagnetic–Triboelectric Nanogenerator for Sustainably Powering Wireless Traffic Volume Sensors. ACS nano, vol.10, no.6, 6241-6247.
Wu, Yingchun, Zhong, Xiandai, Wang, Xue, Yang, Ya, Wang, Zhong Lin. Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies. Nano research, vol.7, no.11, 1631-1639.
Zhao, Zhenfu, Pu, Xiong, Du, Chunhua, Li, Linxuan, Jiang, Chunyan, Hu, Weiguo, Wang, Zhong Lin. Freestanding Flag-Type Triboelectric Nanogenerator for Harvesting High-Altitude Wind Energy from Arbitrary Directions. ACS nano, vol.10, no.2, 1780-1787.
Zhang, Lei, Zhang, Binbin, Chen, Jun, Jin, Long, Deng, Weili, Tang, Junfeng, Zhang, Haitao, Pan, Hong, Zhu, Minhao, Yang, Weiqing, Wang, Zhong Lin. Lawn Structured Triboelectric Nanogenerators for Scavenging Sweeping Wind Energy on Rooftops. Advanced materials, vol.28, no.8, 1650-1656.
Bian, Yaoxing, Jiang, Tao, Xiao, Tianxiao, Gong, Wenping, Cao, Xia, Wang, Zhaona, Wang, Zhong Lin. Triboelectric Nanogenerator Tree for Harvesting Wind Energy and Illuminating in Subway Tunnel. Advanced materials technologies, vol.3, no.3, 1700317-.
Kim, Daewon, Tcho, Il-Woong, Choi, Yang-Kyu. Triboelectric nanogenerator based on rolling motion of beads for harvesting wind energy as active wind speed sensor. Nano energy, vol.52, 256-263.
Zhu, Guang, Su, Yuanjie, Bai, Peng, Chen, Jun, Jing, Qingshen, Yang, Weiqing, Wang, Zhong Lin. Harvesting Water Wave Energy by Asymmetric Screening of Electrostatic Charges on a Nanostructured Hydrophobic Thin-Film Surface. ACS nano, vol.8, no.6, 6031-6037.
Su, Y., Wen, X., Zhu, G., Yang, J., Chen, J., Bai, P., Wu, Z., Jiang, Y., Lin Wang, Z.. Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano energy, vol.9, 186-195.
Chen, Jun, Yang, Jin, Li, Zhaoling, Fan, Xing, Zi, Yunlong, Jing, Qingshen, Guo, Hengyu, Wen, Zhen, Pradel, Ken C., Niu, Simiao, Wang, Zhong Lin. Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy. ACS nano, vol.9, no.3, 3324-3331.
Xu, Minyi, Zhao, Tiancong, Wang, Chuan, Zhang, Steven L., Li, Zhou, Pan, Xinxiang, Wang, Zhong Lin. High Power Density Tower-like Triboelectric Nanogenerator for Harvesting Arbitrary Directional Water Wave Energy. ACS nano, vol.13, no.2, 1932-1939.
Xu, Liang, Pang, Yaokun, Zhang, Chi, Jiang, Tao, Chen, Xiangyu, Luo, Jianjun, Tang, Wei, Cao, Xia, Wang, Zhong Lin. Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting. Nano energy, vol.31, 351-358.
Xiao, Tian Xiao, Liang, Xi, Jiang, Tao, Xu, Liang, Shao, Jia Jia, Nie, Jin Hui, Bai, Yu, Zhong, Wei, Wang, Zhong Lin. Spherical Triboelectric Nanogenerators Based on Spring‐Assisted Multilayered Structure for Efficient Water Wave Energy Harvesting. Advanced functional materials, vol.28, no.35, 1802634-.
Lei, Rui, Zhai, Hua, Nie, Jinhui, Zhong, Wei, Bai, Yu, Liang, Xi, Xu, Liang, Jiang, Tao, Chen, Xiangyu, Wang, Zhong Lin. Butterfly‐Inspired Triboelectric Nanogenerators with Spring‐Assisted Linkage Structure for Water Wave Energy Harvesting. Advanced materials technologies, vol.4, no.3, 1800514-.
Hinchet, Ronan, Yoon, Hong-Joon, Ryu, Hanjun, Kim, Moo-Kang, Choi, Eue-Keun, Kim, Dong-Sun, Kim, Sang-Woo. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science, vol.365, no.6452, 491-494.
Huang, Long‐Biao, Bai, Gongxun, Wong, Man‐Chung, Yang, Zhibin, Xu, Wei, Hao, Jianhua. Magnetic‐Assisted Noncontact Triboelectric Nanogenerator Converting Mechanical Energy into Electricity and Light Emissions. Advanced materials, vol.28, no.14, 2744-2751.
Lim, Kyung-Won, Peddigari, Mahesh, Park, Chan Hee, Lee, Ha Young, Min, Yuho, Kim, Jong-Woo, Ahn, Cheol-Woo, Choi, Jong-Jin, Hahn, Byung-Dong, Choi, Joon-Hwan, Park, Dong-Soo, Hong, Jae-Keun, Yeom, Jong-Taek, Yoon, Woon-Ha, Ryu, Jungho, Yi, Sam Nyung, Hwang, Geon-Tae. A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble nano-bullets for powering a wireless indoor positioning system. Energy & environmental science, vol.12, no.2, 666-674.
Yang, Ya, Zhang, Hulin, Lin, Zong-Hong, Zhou, Yu Sheng, Jing, Qingshen, Su, Yuanjie, Yang, Jin, Chen, Jun, Hu, Chenguo, Wang, Zhong Lin. Human Skin Based Triboelectric Nanogenerators for Harvesting Biomechanical Energy and as Self-Powered Active Tactile Sensor System. ACS nano, vol.7, no.10, 9213-9222.
Wang, Xiandi, Zhang, Hanlu, Dong, Lin, Han, Xun, Du, Weiming, Zhai, Junyi, Pan, Caofeng, Wang, Zhong Lin. Self‐Powered High‐Resolution and Pressure‐Sensitive Triboelectric Sensor Matrix for Real‐Time Tactile Mapping. Advanced materials, vol.28, no.15, 2896-2903.
Wang, Xiandi, Zhang, Yufei, Zhang, Xiaojia, Huo, Zhihao, Li, Xiaoyi, Que, Miaoling, Peng, Zhengchun, Wang, Hui, Pan, Caofeng. A Highly Stretchable Transparent Self‐Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics. Advanced materials, vol.30, no.12, 1706738-.
Jeon, Seung-Bae, Kim, Weon-Guk, Park, Sang-Jae, Tcho, Il-Woong, Jin, Ik-Kyeong, Han, Joon-Kyu, Kim, Daewon, Choi, Yang-Kyu. Self-powered wearable touchpad composed of all commercial fabrics utilizing a crossline array of triboelectric generators. Nano energy, vol.65, 103994-.
Lee, Keun Young, Yoon, Hong‐Joon, Jiang, Tao, Wen, Xiaonan, Seung, Wanchul, Kim, Sang‐Woo, Wang, Zhong Lin. Fully Packaged Self‐Powered Triboelectric Pressure Sensor Using Hemispheres‐Array. Advanced energy materials, vol.6, no.11, 1502566-.
Yang, Jin, Chen, Jun, Su, Yuanjie, Jing, Qingshen, Li, Zhaoling, Yi, Fang, Wen, Xiaonan, Wang, Zhaona, Wang, Zhong Lin. Eardrum‐Inspired Active Sensors for Self‐Powered Cardiovascular System Characterization and Throat‐Attached Anti‐Interference Voice Recognition. Advanced materials, vol.27, no.8, 1316-1326.
Guo, Hengyu, Pu, Xianjie, Chen, Jie, Meng, Yan, Yeh, Min-Hsin, Liu, Guanlin, Tang, Qian, Chen, Baodong, Liu, Di, Qi, Song, Wu, Changsheng, Hu, Chenguo, Wang, Jie, Wang, Zhong Lin. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Science robotics, vol.3, no.20, eaat2516-eaat2516.
Jang, Jongmoon, Lee, JangWoo, Jang, Jeong Hun, Choi, Hongsoo. A Triboelectric‐Based Artificial Basilar Membrane to Mimic Cochlear Tonotopy. Advanced healthcare materials, vol.5, no.19, 2481-2487.
Lin, Zong‐Hong, Zhu, Guang, Zhou, Yu Sheng, Yang, Ya, Bai, Peng, Chen, Jun, Wang, Zhong Lin. A Self‐Powered Triboelectric Nanosensor for Mercury Ion Detection. Angewandte Chemie. international edition, vol.52, no.19, 5065-5069.
Li, Zhaoling, Chen, Jun, Yang, Jin, Su, Yuanjie, Fan, Xing, Wu, Ying, Yu, Chongwen, Wang, Zhong Lin. β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy & environmental science, vol.8, no.3, 887-896.
Lin, Zong‐Hong, Cheng, Gang, Lin, Long, Lee, Sangmin, Wang, Zhong Lin. Water–Solid Surface Contact Electrification and its Use for Harvesting Liquid‐Wave Energy. Angewandte Chemie. international edition, vol.52, no.48, 12545-12549.
Jeon, Seung-Bae, Kim, Daewon, Yoon, Gun-Wook, Yoon, Jun-Bo, Choi, Yang-Kyu. Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight. Nano energy, vol.12, 636-645.
Li, Xiuhan, Yeh, Min-Hsin, Lin, Zong-Hong, Guo, Hengyu, Yang, Po-Kang, Wang, Jie, Wang, Sihong, Yu, Ruomeng, Zhang, Tiejun, Wang, Zhong Lin. Self-Powered Triboelectric Nanosensor for Microfluidics and Cavity-Confined Solution Chemistry. ACS nano, vol.9, no.11, 11056-11063.
Jeon, Seung‐Bae, Seol, Myeong‐Lok, Kim, Daewon, Park, Sang‐Jae, Choi, Yang‐Kyu. Self‐Powered Ion Concentration Sensor with Triboelectricity from Liquid–Solid Contact Electrification. Advanced electronic materials, vol.2, no.5, 1600006-.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.