$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management

Energy conversion and management, v.229, 2021년, pp.113715 -   

Suresh Patil, Mahesh (Corresponding author.) ,  Seo, Jae-Hyeong ,  Lee, Moo-Yeon

Abstract AI-Helper 아이콘AI-Helper

Abstract The objective of this study is to investigate direct cooling performance characteristics of Li-ion battery and battery pack for electric vehicles using dielectric fluid immersion cooling (DFIC) technology. The experimental results showed that Li-ion pouch cell immersed in flowing dielectri...

주제어

참고문헌 (53)

  1. Energy Convers Manage Liu 150 304 2017 10.1016/j.enconman.2017.08.016 Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review 

  2. 10.3390/en11102550 Patil M, Panchal S, Kim N, Lee M-Y. Cooling Performance Characteristics of 20 Ah Lithium-Ion Pouch Cell with Cold Plates along Both Surfaces. Energies 2018; 11: 2550. https://doi.org/10.3390/en11102550. 

  3. Int J Heat Mass Transf Patil 155 119728 2020 10.1016/j.ijheatmasstransfer.2020.119728 Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate 

  4. Appl Therm Eng Du 121 501 2017 10.1016/j.applthermaleng.2017.04.077 An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method 

  5. Appl Energy Liu 263 114640 2020 10.1016/j.apenergy.2020.114640 Self-adapting J-type air-based battery thermal management system via model predictive control 

  6. Int J Energy Res Patil 1 2020 Numerical study on sensitivity analysis of factors influencing liquid cooling with double cold-plate for lithium-ion pouch cell 

  7. Energy Convers Manage Qin 195 1371 2019 10.1016/j.enconman.2019.05.084 Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material 

  8. Energy Convers Manage Wu 138 486 2017 10.1016/j.enconman.2017.02.022 Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system 

  9. J Power Sources Siddique 401 224 2018 10.1016/j.jpowsour.2018.08.094 A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations 

  10. J Power Sources Zhao 255 29 2014 10.1016/j.jpowsour.2013.12.138 An experimental study of lithium ion battery thermal management using flexible hydrogel films 

  11. Int J Heat Mass Transf Panchal 135 368 2019 10.1016/j.ijheatmasstransfer.2019.01.076 Heat and mass transfer modeling and investigation of multiple LiFePO4/graphite batteries in a pack at low C-rates with water-cooling 

  12. Appl Therm Eng Chen 94 846 2016 10.1016/j.applthermaleng.2015.10.015 Comparison of different cooling methods for lithium ion battery cells 

  13. IEEE Open J Veh Technol Sundin 1 82 2020 10.1109/OJVT.2020.2972541 Thermal management of li-ion batteries with single-phase liquid immersion cooling 

  14. Adv Sci Technol Lett Patil 141 164 2016 10.14257/astl.2016.141.34 A novel design for lithium ion battery cooling using mineral oil 

  15. Proc Asian Conf Therm Sci Seo 2017 Numerical study on the cooling performances of various cooling methods for laminated type battery 

  16. J Power Sources Park 227 191 2013 10.1016/j.jpowsour.2012.11.039 Battery cell arrangement and heat transfer fluid effects on the parasitic power consumption and the cell temperature distribution in a hybrid electric vehicle 

  17. Int J Energy Res Karimi 38 14 1793 2014 10.1002/er.3173 Thermal analysis of high-power lithium-ion battery packs using flow network approach: Thermal management of a high-power Li-ion battery pack 

  18. M&I Materials Limited. MIVOLT LIQUID IMMERSION COOLING, Dielectric fluids for safer, cooler, greener high performance EV batteries. 2020. https://mivoltcooling.com/downloads/MIVOLT-Battery-Brochure.pdf (accessed July 29, 2020). 

  19. M&I Materials Ltd. I-CoBat : Immersion-Cooled Battery 2020. https://gtr.ukri.org/projects?ref=105305 (accessed July 29, 2020). 

  20. 3MTM NovecTM 7000 Engineered Fluid 2020. https://multimedia.3m.com/mws/media/121372O/3m-novec-7000-engineered-fluid-tds.pdf (accessed August 7, 2020). 

  21. XING - Immersio 2020. https://www.xingmobility.com/immersio-battery-system (accessed July 29, 2020). 

  22. 10.3390/wevj1010126 Kim G-H, Pesaran A. Battery Thermal Management Design Modeling. World Electr Veh J 2007; 1:126-33. https://doi.org/10.3390/wevj1010126. 

  23. Appl Therm Eng Deng 142 10 2018 10.1016/j.applthermaleng.2018.06.043 Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review 

  24. Johnson N, Meyring W, Rivers. Application of Fluid Protection for Increased Safety and Efficiency of Lithium-Ion Battery and Electronic Devices n.d. https://nfpa.org/-/media/Files/News-and-Research/Resources/Research-Foundation/Symposia/2016-SUPDET/2016-Papers/SUPDET2016Smith.ashx (accessed July 28, 2020). 

  25. J Electrochem Soc Hunt 163 9 A1846 2016 10.1149/2.0361609jes Surface cooling causes accelerated degradation compared to tab cooling for lithium-ion pouch cells 

  26. Thesis P, Zhao Y. A combined experimental and modelling study for understanding lithium ion behaviour under complex thermal boundary conditions and cell design optimisation. 2019. 

  27. J Electrochem Soc Zhao 165 13 A3169 2018 10.1149/2.0901813jes Modeling the effects of thermal gradients induced by tab and surface cooling on lithium ion cell performance 

  28. Energy Storage Mater Feng 10 246 2018 10.1016/j.ensm.2017.05.013 Thermal runaway mechanism of lithium ion battery for electric vehicles: A review 

  29. Appl Energy Zhang 261 114440 2020 10.1016/j.apenergy.2019.114440 Computational identification of the safety regime of Li-ion battery thermal runaway 

  30. Theory Guide ANSYS Inc 2018 Release 19.1, Help System 

  31. J Electrochem Soc Kim 158 8 A955 2011 10.1149/1.3597614 Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales 

  32. Appl Therm Eng Zhang 173 115216 2020 10.1016/j.applthermaleng.2020.115216 Thermal analysis of a 6s4p Lithium-ion battery pack cooled by cold plates based on a multi-domain modeling framework 

  33. J Storage Mater Tran 32 101785 2020 Effect of integrating the hysteresis component to the equivalent circuit model of Lithium-ion battery for dynamic and non-dynamic applications 

  34. Int J Heat Mass Transf Panchal 109 1239 2017 10.1016/j.ijheatmasstransfer.2017.03.005 Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite battery 

  35. J Power Sources Kim 189 1 841 2009 10.1016/j.jpowsour.2008.10.019 Modeling for the scale-up of a lithium-ion polymer battery 

  36. J Electrochem Soc Yi 160 3 A437 2013 10.1149/2.039303jes Three-dimensional thermal modeling of a lithium-ion battery considering the combined effects of the electrical and thermal contact resistances between current collecting tab and lead wire 

  37. J Power Sources Kwon 163 1 151 2006 10.1016/j.jpowsour.2006.03.012 A two-dimensional modeling of a lithium-polymer battery 

  38. J Power Sources Kim 180 2 909 2008 10.1016/j.jpowsour.2007.09.054 Effect of electrode configuration on the thermal behavior of a lithium-polymer battery 

  39. J Power Sources Yi 244 143 2013 10.1016/j.jpowsour.2013.02.085 Modeling the temperature dependence of the discharge behavior of a lithium-ion battery in low environmental temperature 

  40. J Electrochem Soc Hatchard 148 7 A755 2001 10.1149/1.1377592 Thermal model of cylindrical and prismatic lithium-ion cells 

  41. A123 systems. Cell Applications - Integrated Lithium-ion Applications | A123 Systems n.d. http://www.a123systems.com/automotive/products/cells/ (accessed July 25, 2020). 

  42. 10.4271/2015-01-1189 Panchal S, Mathewson S, Fraser R, Culham R, Fowler M. Experimental Measurements of Thermal Characteristics of LiFePO4 Battery. SAE Tech. Pap., vol. 2015- April, SAE International; 2015. https://doi.org/10.4271/2015-01-1189. 

  43. J Power Sources Lin 294 633 2015 10.1016/j.jpowsour.2015.06.129 Thermal analysis of large-capacity LiFePO4 power batteries for electric vehicles 

  44. 10.3390/en11051243 Neupane S, Alipanah M, Barnes D, Li X. Heat Generation Characteristics of LiFePO4 Pouch Cells with Passive Thermal Management. Energies 2018;11:1243. https://doi.org/10.3390/en11051243. 

  45. Energy Bazinski 114 1085 2016 10.1016/j.energy.2016.08.087 Measuring and assessing the effective in-plane thermal conductivity of lithium iron phosphate pouch cells 

  46. Int J Energy Res Wei 44 12 9466 2020 10.1002/er.5016 A comprehensive study on thermal conductivity of the lithium­ion battery 

  47. J Electrochem Soc Wu 162 1 A181 2015 10.1149/2.0831501jes Thermal design for the pouch-type large-format lithium-ion batteries: I. Thermo-electrical modeling and origins of temperature non-uniformity 

  48. Appl Therm Eng Bai 126 17 2017 10.1016/j.applthermaleng.2017.07.141 Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source 

  49. Appl Therm Eng Li 146 866 2019 10.1016/j.applthermaleng.2018.10.061 Experiment and simulation for pouch battery with silica cooling plates and copper mesh based air cooling thermal management system 

  50. Appl Energy Saw 177 783 2016 10.1016/j.apenergy.2016.05.122 Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling 

  51. J Power Sources Fan 238 301 2013 10.1016/j.jpowsour.2013.03.050 A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles 

  52. Appl Therm Eng Li 147 829 2019 10.1016/j.applthermaleng.2018.11.009 Three-dimensional thermal modeling of Li-ion battery cell and 50 V Li-ion battery pack cooled by mini-channel cold plate 

  53. Appl Energy Liu 259 114143 2020 10.1016/j.apenergy.2019.114143 Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries 

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로