$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Moonlighting Proteins Are Important Players in Cancer Immunology 원문보기

Frontiers in immunology, v.11, 2020년, pp.613069 -   

Adamo, Annalisa (Section of Immunology, Department of Medicine, University of Verona , Verona , Italy) ,  Frusteri, Cristina (Section of Immunology, Department of Medicine, University of Verona , Verona , Italy) ,  Pallotta, Maria Teresa (Department of Experimental Medicine, University of Perugia , Perugia , Italy) ,  Pirali, Tracey (Department of Pharmaceutical Sciences, University of Piemonte Orientale , Novara , Italy) ,  Sartoris, Silvia (Section of Immunology, Department of Medicine, University of Verona , Verona , Italy) ,  Ugel, Stefano (Section of Immunology, Department of Medicine, University of Verona , Verona , Italy)

Abstract AI-Helper 아이콘AI-Helper

Plasticity and adaptation to environmental stress are the main features that tumor and immune system share. Except for intrinsic and high-defined properties, cancer and immune cells need to overcome the opponent’s defenses by activating more effective signaling networks, based on common elemen...

주제어

참고문헌 (296)

  1. 1 Waldman AD Fritz JM Lenardo MJ A guide to cancer immunotherapy: from T cell basic science to clinical practice . Nat Rev Immunol ( 2020 ) 20 ( 11 ): 651–68 .   10.1038/s41577-020-0306-5 

  2. 2 Murciano-Goroff YR Warner AB Wolchok JD The future of cancer immunotherapy: microenvironment-targeting combinations . Cell Res ( 2020 ) 30 ( 6 ): 507–19 .   10.1038/s41422-020-0337-2 

  3. 3 Jeffery CJ Moonlighting proteins . Trends Biochem Sci ( 1999 ) 24 ( 1 ): 8 – 11 .   10.1016/s0968-0004(98)01335-8 10087914 

  4. 4 Jeffery CJ Enzymes, pseudoenzymes, and moonlighting proteins: diversity of function in protein superfamilies . FEBS J ( 2020 ).   10.1111/febs.15446 

  5. 5 Sirover MA Subcellular dynamics of multifunctional protein regulation: mechanisms of GAPDH intracellular translocation . J Cell Biochem ( 2012 ) 113 ( 7 ): 2193–200 .   10.1002/jcb.24113 

  6. 6 Zhang Q Raje V Yakovlev VA Yacoub A Szczepanek K Meier J Mitochondrial localized Stat3 promotes breast cancer growth via phosphorylation of serine 727 . J Biol Chem ( 2013 ) 288 ( 43 ): 31280–8 .   10.1074/jbc.M113.505057 

  7. 7 Zhang Y Sampathkumar A Kerber SM Swart C Hille C Seerangan K A moonlighting role for enzymes of glycolysis in the co-localization of mitochondria and chloroplasts . Nat Commun ( 2020 ) 11 ( 1 ): 4509 .   10.1038/s41467-020-18234-w 32908151 

  8. 8 Huberts DH van der Klei IJ Moonlighting proteins: an intriguing mode of multitasking . Biochim Biophys Acta ( 2010 ) 1803 ( 4 ): 520–5 .   10.1016/j.bbamcr.2010.01.022 

  9. 9 Min KW Lee SH Baek SJ Moonlighting proteins in cancer . Cancer Lett ( 2016 ) 370 ( 1 ): 108–16 .   10.1016/j.canlet.2015.09.022 

  10. 10 Schwarcz R The kynurenine pathway of tryptophan degradation as a drug target . Curr Opin Pharmacol ( 2004 ) 4 ( 1 ): 12–7 .   10.1016/j.coph.2003.10.006 

  11. 11 Sugimoto H Oda S Otsuki T Hino T Yoshida T Shiro Y Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase . Proc Natl Acad Sci U S A ( 2006 ) 103 ( 8 ): 2611–6 .   10.1073/pnas.0508996103 

  12. 12 Hayaishi O Rothberg S Mehler AH Saito Y Studies on oxygenases; enzymatic formation of kynurenine from tryptophan . J Biol Chem ( 1957 ) 229 ( 2 ): 889–96 . 

  13. 13 Munn DH Zhou M Attwood JT Bondarev I Conway SJ Marshall B Prevention of allogeneic fetal rejection by tryptophan catabolism . Science ( 1998 ) 281 ( 5380 ): 1191–3 .   10.1126/science.281.5380.1191 

  14. 14 Bock F Rössner S Onderka J Lechmann M Pallotta MT Fallarino F Topical application of soluble CD83 induces IDO-mediated immune modulation, increases Foxp3+ T cells, and prolongs allogeneic corneal graft survival . J Immunol ( 2013 ) 191 ( 4 ): 1965–75 .   10.4049/jimmunol.1201531 

  15. 15 Boasso A Wounding the immune system with its own blade: HIV-induced tryptophan catabolism and pathogenesis . Curr Med Chem ( 2011 ) 18 ( 15 ): 2247–56 .   10.2174/092986711795656126 

  16. 16 Romani L Fallarino F De Luca A Montagnoli C D’Angelo C Zelante T Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease . Nature ( 2008 ) 451 ( 7175 ): 211–5 .   10.1038/nature06471 

  17. 17 Orabona C Mondanelli G Pallotta MT Carvalho A Albini E Fallarino F Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1in juvenile diabetes . JCI Insight ( 2018 ) 3 ( 6 ): e96244 .   10.1172/jci.insight.96244 

  18. 18 Mondanelli G Ugel S Grohmann U Bronte V The immune regulation in cancer by the amino acid metabolizing enzymes ARG and IDO . Curr Opin Pharmacol ( 2017 ) 35 : 30–9 .   10.1016/j.coph.2017.05.002 

  19. 19 Grohmann U Fallarino F Puccetti P Tolerance, DCs and tryptophan: much ado about IDO . Trends Immunol ( 2003 ) 24 ( 5 ): 242–8 .   10.1016/s1471-4906(03)00072-3 

  20. 20 Grohmann U Puccetti P The Coevolution of IDO1 and AhR in the Emergence of Regulatory T-Cells in Mammals . Front Immunol ( 2015 ) 6 : 58 .   10.3389/fimmu.2015.00058 25729384 

  21. 21 Munn DH Sharma MD Baban B Harding HP Zhang Y Ron D GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase . Immunity ( 2005 ) 22 ( 5 ): 633–42 .   10.1016/j.immuni.2005.03.013 

  22. 22 Fallarino F Grohmann U You S McGrath BC Cavener DR Vacca C The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells . J Immunol ( 2006 ) 176 ( 11 ): 6752–61 .   10.4049/jimmunol.176.11.6752 

  23. 23 Sharma MD Hou DY Liu Y Koni PA Metz R Chandler P Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes . Blood ( 2009 ) 113 ( 24 ): 6102–11 .   10.1182/blood-2008-12-195354 

  24. 24 Van de Velde LA Guo XJ Barbaric L Smith AM Oguin T Thomas PG Stress Kinase GCN2 Controls the Proliferative Fitness and Trafficking of Cytotoxic T Cells Independent of Environmental Amino Acid Sensing . Cell Rep ( 2016 ) 17 ( 9 ): 2247–58 .   10.1016/j.celrep.2016.10.079 

  25. 25 Ravishankar B Liu H Shinde R Chaudhary K Xiao W Bradley J The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity . Proc Natl Acad Sci U S A ( 2015 ) 112 ( 34 ): 10774–9 .   10.1073/pnas.1504276112 

  26. 26 Platten M Wick W Van den Eynde BJ Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion . Cancer Res ( 2012 ) 72 ( 21 ): 5435–40 .   10.1158/0008-5472.Can-12-0569 

  27. 27 Bessede A Gargaro M Pallotta MT Matino D Servillo G Brunacci C Aryl hydrocarbon receptor control of a disease tolerance defence pathway . Nature ( 2014 ) 511 ( 7508 ): 184–90 .   10.1038/nature13323 

  28. 28 Gutiérrez-Vázquez C Quintana FJ Regulation of the Immune Response by the Aryl Hydrocarbon Receptor . Immunity ( 2018 ) 48 ( 1 ): 19 – 33 .   10.1016/j.immuni.2017.12.012 29343438 

  29. 29 Quintana FJ Murugaiyan G Farez MF Mitsdoerffer M Tukpah AM Burns EJ An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis . Proc Natl Acad Sci U S A ( 2010 ) 107 ( 48 ): 20768–73 .   10.1073/pnas.1009201107 

  30. 30 Takenaka MC Gabriely G Rothhammer V Mascanfroni ID Wheeler MA Chao CC Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39 . Nat Neurosci ( 2019 ) 22 ( 5 ): 729–40 .   10.1038/s41593-019-0370-y 

  31. 31 Hennequart M Pilotte L Cane S Hoffmann D Stroobant V Plaen E Constitutive IDO1 Expression in Human Tumors Is Driven by Cyclooxygenase-2 and Mediates Intrinsic Immune Resistance . Cancer Immunol Res ( 2017 ) 5 ( 8 ): 695 – 709 .   10.1158/2326-6066.Cir-16-0400 28765120 

  32. 32 Pallotta MT Orabona C Volpi C Vacca C Belladonna ML Bianchi R Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells . Nat Immunol ( 2011 ) 12 ( 9 ): 870–8 .   10.1038/ni.2077 

  33. 33 Orabona C Pallotta MT Grohmann U Different partners, opposite outcomes: a new perspective of the immunobiology of indoleamine 2,3-dioxygenase . Mol Med ( 2012 ) 18 ( 1 ): 834–42 .   10.2119/molmed.2012.00029 

  34. 34 Mondanelli G Bianchi R Pallotta MT Orabona C Albini E Iacono A A Relay Pathway between Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells . Immunity ( 2017 ) 46 ( 2 ): 233–44 .   10.1016/j.immuni.2017.01.005 

  35. 35 Yuasa HJ Takubo M Takahashi A Hasegawa T Noma H Suzuki T Evolution of vertebrate indoleamine 2,3-dioxygenases . J Mol Evol ( 2007 ) 65 ( 6 ): 705–14 .   10.1007/s00239-007-9049-1 

  36. 36 Pallotta MT Orabona C Bianchi R Vacca C Fallarino F Belladonna ML Forced IDO1 expression in dendritic cells restores immunoregulatory signalling in autoimmune diabetes . J Cell Mol Med ( 2014 ) 18 ( 10 ): 2082–91 .   10.1111/jcmm.12360 

  37. 37 Orabona C Pallotta MT Volpi C Fallarino F Vacca C Bianchi R SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis . Proc Natl Acad Sci U S A ( 2008 ) 105 ( 52 ): 20828–33 .   10.1073/pnas.0810278105 

  38. 38 Albini E Rosini V Gargaro M Mondanelli G Belladonna ML Pallotta MT Distinct roles of immunoreceptor tyrosine-based motifs in immunosuppressive indoleamine 2,3-dioxygenase 1 . J Cell Mol Med ( 2017 ) 21 ( 1 ): 165–76 .   10.1111/jcmm.12954 

  39. 39 Iacono A Pompa A De Marchis F Panfili E Greco FA Coletti A Class IA PI3Ks regulate subcellular and functional dynamics of IDO1 . EMBO Rep ( 2020 ) 21(12): e49756 .   10.15252/embr.201949756 33159421 

  40. 40 Garber K A new cancer immunotherapy suffers a setback . Science ( 2018 ) 360 ( 6389 ): 588 .   10.1126/science.360.6389.588 29748264 

  41. 41 Safa AR Roles of c-FLIP in Apoptosis, Necroptosis, and Autophagy . J Carcinog Mutagen ( 2013 ) Suppl 6 .   10.4172/2157-2518.S6-003 

  42. 42 Safa AR c-FLIP, a master anti-apoptotic regulator . Exp Oncol ( 2012 ) 34 ( 3 ): 176–84 . 

  43. 43 Feoktistova M Geserick P Kellert B Dimitrova DP Langlais C Hupe M cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms . Mol Cell ( 2011 ) 43 ( 3 ): 449–63 .   10.1016/j.molcel.2011.06.011 

  44. 44 Levine B Klionsky DJ Development by self-digestion: molecular mechanisms and biological functions of autophagy . Dev Cell ( 2004 ) 6 ( 4 ): 463–77 .   10.1016/s1534-5807(04)00099-1 

  45. 45 Nakatogawa H Ichimura Y Ohsumi Y Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion . Cell ( 2007 ) 130 ( 1 ): 165–78 .   10.1016/j.cell.2007.05.021 

  46. 46 Ryu BK Lee MG Chi SG Kim YW Park JH Increased expression of cFLIP(L) in colonic adenocarcinoma . J Pathol ( 2001 ) 194 ( 1 ): 15–9 .   10.1002/path.835 

  47. 47 Wang W Wang S Song X Sima N Xu X Luo A The relationship between c-FLIP expression and human papillomavirus E2 gene disruption in cervical carcinogenesis . Gynecol Oncol ( 2007 ) 105 ( 3 ): 571–7 .   10.1016/j.ygyno.2007.01.051 

  48. 48 Haag C Stadel D Zhou S Bachem MG Möller P Debatin KM Identification of c-FLIP(L) and c-FLIP(S) as critical regulators of death receptor-induced apoptosis in pancreatic cancer cells . Gut ( 2011 ) 60 ( 2 ): 225–37 .   10.1136/gut.2009.202325 

  49. 49 Rao-Bindal K Rao CK Yu L Kleinerman ES Expression of c-FLIP in pulmonary metastases in osteosarcoma patients and human xenografts . Pediatr Blood Cancer ( 2013 ) 60 ( 4 ): 575–9 .   10.1002/pbc.24412 

  50. 50 Lee TJ Lee JT Park JW Kwon TK Acquired TRAIL resistance in human breast cancer cells are caused by the sustained cFLIP(L) and XIAP protein levels and ERK activation . Biochem Biophys Res Commun ( 2006 ) 351 ( 4 ): 1024–30 .   10.1016/j.bbrc.2006.10.163 

  51. 51 Valnet-Rabier MB Challier B Thiebault S Angonin R Margueritte G Mougin C c-Flip protein expression in Burkitt’s lymphomas is associated with a poor clinical outcome . Br J Haematol ( 2005 ) 128 ( 6 ): 767–73 .   10.1111/j.1365-2141.2005.05378.x 

  52. 52 Valente G Manfroi F Peracchio C Nicotra G Castino R Nicosia G cFLIP expression correlates with tumour progression and patient outcome in non-Hodgkin lymphomas of low grade of malignancy . Br J Haematol ( 2006 ) 132 ( 5 ): 560–70 .   10.1111/j.1365-2141.2005.05898.x 

  53. 53 Fiore A Ugel S De Sanctis F Sandri S Fracasso G Trovato R Induction of immunosuppressive functions and NF-κB by FLIP in monocytes . Nat Commun ( 2018 ) 9 ( 1 ): 5193 .   10.1038/s41467-018-07654-4 30518925 

  54. 54 Safa AR Kamocki K Saadatzadeh MR Bijangi-Vishehsaraei K c-FLIP, a Novel Biomarker for Cancer Prognosis, Immunosuppression, Alzheimer’s Disease, Chronic Obstructive Pulmonary Disease (COPD), and a Rationale Therapeutic Target . Biomark J ( 2019 ) 5 ( 1 ).   10.36648/2472-1646.5.1.59 

  55. 55 Haverkamp JM Smith AM Weinlich R Dillon CP Qualls JE Neale G Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways . Immunity ( 2014 ) 41 ( 6 ): 947–59 .   10.1016/j.immuni.2014.10.020 

  56. 56 Plaza-Sirvent C Schuster M Neumann Y Heise U Pils MC Schulze-Osthoff K c-FLIP Expression in Foxp3-Expressing Cells Is Essential for Survival of Regulatory T Cells and Prevention of Autoimmunity . Cell Rep ( 2017 ) 18 ( 1 ): 12 – 22 .   10.1016/j.celrep.2016.12.022 28052242 

  57. 57 Kataoka T Budd RC Holler N Thome M Martinon F Irmler M The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways . Curr Biol ( 2000 ) 10 ( 11 ): 640–8 .   10.1016/s0960-9822(00)00512-1 

  58. 58 Lens SM Kataoka T Fortner KA Tinel A Ferrero I MacDonald RH The caspase 8 inhibitor c-FLIP(L) modulates T-cell receptor-induced proliferation but not activation-induced cell death of lymphocytes . Mol Cell Biol ( 2002 ) 22 ( 15 ): 5419–33 .   10.1128/mcb.22.15.5419-5433.2002 

  59. 59 Koenig A Buskiewicz IA Fortner KA Russell JQ Asaoka T He YW The c-FLIPL cleavage product p43FLIP promotes activation of extracellular signal-regulated kinase (ERK), nuclear factor kappaB (NF-kappaB), and caspase-8 and T cell survival . J Biol Chem ( 2014 ) 289 ( 2 ): 1183–91 .   10.1074/jbc.M113.506428 

  60. 60 Golks A Brenner D Krammer PH Lavrik IN The c-FLIP-NH2 terminus (p22-FLIP) induces NF-kappaB activation . J Exp Med ( 2006 ) 203 ( 5 ): 1295–305 .   10.1084/jem.20051556 

  61. 61 Baratchian M Davis CA Shimizu A Escors D Bagnéris C Barrett T Distinct Activation Mechanisms of NF-κB Regulator Inhibitor of NF-κB Kinase (IKK) by Isoforms of the Cell Death Regulator Cellular FLICE-like Inhibitory Protein (cFLIP) . J Biol Chem ( 2016 ) 291 ( 14 ): 7608–20 .   10.1074/jbc.M116.718122 

  62. 62 Baker RG Hayden MS Ghosh S NF-kappaB, inflammation, and metabolic disease . Cell Metab ( 2011 ) 13 ( 1 ): 11 – 22 .   10.1016/j.cmet.2010.12.008 21195345 

  63. 63 Fang LW Tai TS Yu WN Liao F Lai MZ Phosphatidylinositide 3-kinase priming couples c-FLIP to T cell activation . J Biol Chem ( 2004 ) 279 ( 1 ): 13–8 .   10.1074/jbc.M303860200 

  64. 64 Neumann L Pforr C Beaudouin J Pappa A Fricker N Krammer PH Dynamics within the CD95 death-inducing signaling complex decide life and death of cells . Mol Syst Biol ( 2010 ) 6 : 352 .   10.1038/msb.2010.6 20212524 

  65. 65 Darnell JE Jr. Kerr IM Stark GR Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins . Science ( 1994 ) 264 ( 5164 ): 1415–21 .   10.1126/science.8197455 

  66. 66 Heinrich PC Behrmann I Müller-Newen G Schaper F Graeve L Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway . Biochem J ( 1998 ) 334 ( Pt 2 ): 297 – 314 .   10.1042/bj3340297 9716487 

  67. 67 Yu H Jove R The STATs of cancer–new molecular targets come of age . Nat Rev Cancer ( 2004 ) 4 ( 2 ): 97 – 105 .   10.1038/nrc1275 14964307 

  68. 68 Schindler C Levy DE Decker T JAK-STAT signaling: from interferons to cytokines . J Biol Chem ( 2007 ) 282 ( 28 ): 20059–63 .   10.1074/jbc.R700016200 

  69. 69 Bowman T Garcia R Turkson J Jove R STATs in oncogenesis . Oncogene ( 2000 ) 19 ( 21 ): 2474–88 .   10.1038/sj.onc.1203527 

  70. 70 Yu H Kortylewski M Pardoll D Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment . Nat Rev Immunol ( 2007 ) 7 ( 1 ): 41 – 51 .   10.1038/nri1995 17186030 

  71. 71 Caprioli F Sarra M Caruso R Stolfi C Fina D Sica G Autocrine regulation of IL-21 production in human T lymphocytes . J Immunol ( 2008 ) 180 ( 3 ): 1800–7 .   10.4049/jimmunol.180.3.1800 

  72. 72 Lamprecht B Kreher S Anagnostopoulos I Johrens K Monteleone G Jundt F Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 signaling and attracts Treg cells via regulation of MIP-3alpha . Blood ( 2008 ) 112 ( 8 ): 3339–47 .   10.1182/blood-2008-01-134783 

  73. 73 Kortylewski M Jove R Yu H Targeting STAT3 affects melanoma on multiple fronts . Cancer Metastasis Rev ( 2005 ) 24 ( 2 ): 315–27 .   10.1007/s10555-005-1580-1 

  74. 74 Cheng P Corzo CA Luetteke N Yu B Nagaraj S Bui MM Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein . J Exp Med ( 2008 ) 205 ( 10 ): 2235–49 .   10.1084/jem.20080132 

  75. 75 Ohno Y Kitamura H Takahashi N Ohtake J Kaneumi S Sumida K IL-6 down-regulates HLA class II expression and IL-12 production of human dendritic cells to impair activation of antigen-specific CD4(+) T cells . Cancer Immunol Immunother ( 2016 ) 65 ( 2 ): 193 – 204 .   10.1007/s00262-015-1791-4 26759006 

  76. 76 Fu XL Duan W Su CY Mao FY Lv YP Teng YS Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression . Cancer Immunol Immunother ( 2017 ) 66 ( 12 ): 1597–608 .   10.1007/s00262-017-2052-5 

  77. 77 Yang XO Panopoulos AD Nurieva R Chang SH Wang D Watowich SS STAT3 regulates cytokine-mediated generation of inflammatory helper T cells . J Biol Chem ( 2007 ) 282 ( 13 ): 9358–63 .   10.1074/jbc.C600321200 

  78. 78 Zhou L Ivanov II Spolski R Min R Shenderov K Egawa T IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways . Nat Immunol ( 2007 ) 8 ( 9 ): 967–74 .   10.1038/ni1488 

  79. 79 Zorn E Nelson EA Mohseni M Porcheray F Kim H Litsa D IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo . Blood ( 2006 ) 108 ( 5 ): 1571–9 .   10.1182/blood-2006-02-004747 

  80. 80 Kortylewski M Xin H Kujawski M Lee H Liu Y Harris T Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment . Cancer Cell ( 2009 ) 15 ( 2 ): 114–23 .   10.1016/j.ccr.2008.12.018 

  81. 81 Vasquez-Dunddel D Pan F Zeng Q Gorbounov M Albesiano E Fu J STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients . J Clin Invest ( 2013 ) 123 ( 4 ): 1580–9 .   10.1172/JCI60083 

  82. 82 Sica A Bronte V Altered macrophage differentiation and immune dysfunction in tumor development . J Clin Invest ( 2007 ) 117 ( 5 ): 1155–66 .   10.1172/JCI31422 

  83. 83 Pollard JW Tumour-educated macrophages promote tumour progression and metastasis . Nat Rev Cancer ( 2004 ) 4 ( 1 ): 71–8 .   10.1038/nrc1256 

  84. 84 Wang Y Shen Y Wang S Shen Q Zhou X The role of STAT3 in leading the crosstalk between human cancers and the immune system . Cancer Lett ( 2018 ) 415 : 117–28 .   10.1016/j.canlet.2017.12.003 

  85. 85 Kumar V Cheng P Condamine T Mony S Languino LR McCaffrey JC CD45 Phosphatase Inhibits STAT3 Transcription Factor Activity in Myeloid Cells and Promotes Tumor-Associated Macrophage Differentiation . Immunity ( 2016 ) 44 ( 2 ): 303–15 .   10.1016/j.immuni.2016.01.014 

  86. 86 Cane S Ugel S Trovato R Marigo I De Sanctis F Sartoris S The Endless Saga of Monocyte Diversity . Front Immunol ( 2019 ) 10 : 1786 .   10.3389/fimmu.2019.01786 31447834 

  87. 87 Corzo CA Cotter MJ Cheng P Cheng F Kusmartsev S Sotomayor E Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells . J Immunol ( 2009 ) 182 ( 9 ): 5693–701 .   10.4049/jimmunol.0900092 

  88. 88 De Sanctis F Bronte V Ugel S Tumor-Induced Myeloid-Derived Suppressor Cells . Microbiol Spectr ( 2016 ) 4 ( 3 ).   10.1128/microbiolspec.MCHD-0016-2015 

  89. 89 Gabrilovich DI Ostrand-Rosenberg S Bronte V Coordinated regulation of myeloid cells by tumours . Nat Rev Immunol ( 2012 ) 12 ( 4 ): 253–68 .   10.1038/nri3175 

  90. 90 Bronte V Brandau S Chen SH Colombo MP Frey AB Greten TF Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards . Nat Commun ( 2016 ) 7 : 12150 .   10.1038/ncomms12150 27381735 

  91. 91 Ugel S De Sanctis F Mandruzzato S Bronte V Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages . J Clin Invest ( 2015 ) 125 ( 9 ): 3365–76 .   10.1172/JCI80006 

  92. 92 Liu CY Wang YM Wang CL Feng PH Ko HW Liu YH Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14(-)/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer . J Cancer Res Clin Oncol ( 2010 ) 136 ( 1 ): 35 – 45 .   10.1007/s00432-009-0634-0 19572148 

  93. 93 Rodriguez PC Zea AH Culotta KS Zabaleta J Ochoa JB Ochoa AC Regulation of T cell receptor CD3zeta chain expression by L-arginine . J Biol Chem ( 2002 ) 277 ( 24 ): 21123–9 .   10.1074/jbc.M110675200 

  94. 94 Rodriguez PC Ochoa AC Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives . Immunol Rev ( 2008 ) 222 : 180–91 .   10.1111/j.1600-065X.2008.00608.x 

  95. 95 Trovato R Fiore A Sartori S Cane S Giugno R Cascione L Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3 . J Immunother Cancer ( 2019 ) 7 ( 1 ): 255 .   10.1186/s40425-019-0734-6 31533831 

  96. 96 Sinha P Okoro C Foell D Freeze HH Ostrand-Rosenberg S Srikrishna G Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells . J Immunol ( 2008 ) 181 ( 7 ): 4666–75 .   10.4049/jimmunol.181.7.4666 

  97. 97 Nefedova Y Huang M Kusmartsev S Bhattacharya R Cheng P Salup R Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer . J Immunol ( 2004 ) 172 ( 1 ): 464–74 .   10.4049/jimmunol.172.1.464 

  98. 98 Wang T Niu G Kortylewski M Burdelya L Shain K Zhang S Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells . Nat Med ( 2004 ) 10 ( 1 ): 48 – 54 .   10.1038/nm976 14702634 

  99. 99 Yu H Pardoll D Jove R STATs in cancer inflammation and immunity: a leading role for STAT3 . Nat Rev Cancer ( 2009 ) 9 ( 11 ): 798 – 809 .   10.1038/nrc2734 19851315 

  100. 100 Harris TJ Grosso JF Yen HR Xin H Kortylewski M Albesiano E Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity . J Immunol ( 2007 ) 179 ( 7 ): 4313–7 .   10.4049/jimmunol.179.7.4313 

  101. 101 Xu ZS Zhang HX Li WW Ran Y Liu TT Xiong MG FAM64A positively regulates STAT3 activity to promote Th17 differentiation and colitis-associated carcinogenesis . Proc Natl Acad Sci U S A ( 2019 ) 116 ( 21 ): 10447–52 .   10.1073/pnas.1814336116 

  102. 102 Curiel TJ Coukos G Zou L Alvarez X Cheng P Mottram P Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival . Nat Med ( 2004 ) 10 ( 9 ): 942–9 .   10.1038/nm1093 

  103. 103 Bates GJ Fox SB Han C Leek RD Garcia JF Harris AL Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse . J Clin Oncol ( 2006 ) 24 ( 34 ): 5373–80 .   10.1200/JCO.2006.05.9584 

  104. 104 Wan YY Flavell RA Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression . Nature ( 2007 ) 445 ( 7129 ): 766–70 .   10.1038/nature05479 

  105. 105 Wegrzyn J Potla R Chwae YJ Sepuri NB Zhang Q Koeck T Function of mitochondrial Stat3 in cellular respiration . Science ( 2009 ) 323 ( 5915 ): 793–7 .   10.1126/science.1164551 

  106. 106 Carbognin E Betto RM Soriano ME Smith AG Martello G Stat3 promotes mitochondrial transcription and oxidative respiration during maintenance and induction of naive pluripotency . EMBO J ( 2016 ) 35 ( 6 ): 618–34 .   10.15252/embj.201592629 

  107. 107 Yang R Rincon M Mitochondrial Stat3, the Need for Design Thinking . Int J Biol Sci ( 2016 ) 12 ( 5 ): 532–44 .   10.7150/ijbs.15153 

  108. 108 Garama DJ White CL Balic JJ Gough DJ Mitochondrial STAT3: Powering up a potent factor . Cytokine ( 2016 ) 87 : 20–5 .   10.1016/j.cyto.2016.05.019 

  109. 109 Gough DJ Corlett A Schlessinger K Wegrzyn J Larner AC Levy DE Mitochondrial STAT3 supports Ras-dependent oncogenic transformation . Science ( 2009 ) 324 ( 5935 ): 1713–6 .   10.1126/science.1171721 

  110. 110 Boengler K Hilfiker-Kleiner D Heusch G Schulz R Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion . Basic Res Cardiol ( 2010 ) 105 ( 6 ): 771–85 .   10.1007/s00395-010-0124-1 

  111. 111 Tammineni P Anugula C Mohammed F Anjaneyulu M Larner AC Sepuri NB The import of the transcription factor STAT3 into mitochondria depends on GRIM-19, a component of the electron transport chain . J Biol Chem ( 2013 ) 288 ( 7 ): 4723–32 .   10.1074/jbc.M112.378984 

  112. 112 Qiu H Lizano P Laure L Sui X Rashed E Park JY H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload . Circulation ( 2011 ) 124 ( 4 ): 406–15 .   10.1161/CIRCULATIONAHA.110.013847 

  113. 113 Craig EA Gambill BD Nelson RJ Heat shock proteins: molecular chaperones of protein biogenesis . Microbiol Rev ( 1993 ) 57 ( 2 ): 402–14 . 

  114. 114 Rosenzweig R Nillegoda NB Mayer MP Bukau B The Hsp70 chaperone network . Nat Rev Mol Cell Biol ( 2019 ) 20 ( 11 ): 665–80 .   10.1038/s41580-019-0133-3 

  115. 115 Kriegenburg F Ellgaard L Hartmann-Petersen R Molecular chaperones in targeting misfolded proteins for ubiquitin-dependent degradation . FEBS J ( 2012 ) 279 ( 4 ): 532–42 .   10.1111/j.1742-4658.2011.08456.x 

  116. 116 Calderwood SK Gong J Murshid A Extracellular HSPs: The Complicated Roles of Extracellular HSPs in Immunity . Front Immunol ( 2016 ) 7 : 159 .   10.3389/fimmu.2016.00159 27199984 

  117. 117 Das JK Xiong X Ren X Yang JM Song J Heat Shock Proteins in Cancer Immunotherapy . J Oncol ( 2019 ) 2019 : 3267207 .   10.1155/2019/3267207 31885572 

  118. 118 Wu J Liu T Rios Z Mei Q Lin X Cao S Heat Shock Proteins and Cancer . Trends Pharmacol Sci ( 2017 ) 38 ( 3 ): 226–56 .   10.1016/j.tips.2016.11.009 

  119. 119 Uozaki H Ishida T Kakiuchi C Horiuchi H Gotoh T Iijima T Expression of heat shock proteins in osteosarcoma and its relationship to prognosis . Pathol Res Pract ( 2000 ) 196 ( 10 ): 665–73 .   10.1016/S0344-0338(00)80118-1 

  120. 120 Campanella C Bucchieri F Merendino AM Fucarino A Burgio G Corona DF The odyssey of Hsp60 from tumor cells to other destinations includes plasma membrane-associated stages and Golgi and exosomal protein-trafficking modalities . PLoS One ( 2012 ) 7 ( 7 ): e42008 .   10.1371/journal.pone.0042008 22848686 

  121. 121 Cappello F Conway de Macario E Marasa L Zummo G Macario AJ Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy . Cancer Biol Ther ( 2008 ) 7 ( 6 ): 801–9 .   10.4161/cbt.7.6.6281 

  122. 122 Barrott JJ Haystead TA Hsp90, an unlikely ally in the war on cancer . FEBS J ( 2013 ) 280 ( 6 ): 1381–96 .   10.1111/febs.12147 

  123. 123 Shipp C Watson K Jones GL Associations of HSP90 client proteins in human breast cancer . Anticancer Res ( 2011 ) 31 ( 6 ): 2095–101 . 

  124. 124 Ichiyanagi T Imai T Kajiwara C Mizukami S Nakai A Nakayama T Essential role of endogenous heat shock protein 90 of dendritic cells in antigen cross-presentation . J Immunol ( 2010 ) 185 ( 5 ): 2693–700 .   10.4049/jimmunol.1000821 

  125. 125 Stocki P Wang XN Dickinson AM Inducible heat shock protein 70 reduces T cell responses and stimulatory capacity of monocyte-derived dendritic cells . J Biol Chem ( 2012 ) 287 ( 15 ): 12387–94 .   10.1074/jbc.M111.307579 

  126. 126 Spiering R van der Zee R Wagenaar J van Eden W Broere F Mycobacterial and mouse HSP70 have immuno-modulatory effects on dendritic cells . Cell Stress Chaperones ( 2013 ) 18 ( 4 ): 439–46 .   10.1007/s12192-012-0397-4 

  127. 127 Kol A Lichtman AH Finberg RW Libby P Kurt-Jones EA Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells . J Immunol ( 2000 ) 164 ( 1 ): 13–7 .   10.4049/jimmunol.164.1.13 

  128. 128 Chalmin F Ladoire S Mignot G Vincent J Bruchard M Remy-Martin JP Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells . J Clin Invest ( 2010 ) 120 ( 2 ): 457–71 .   10.1172/jci40483 

  129. 129 Gross C Schmidt-Wolf IG Nagaraj S Gastpar R Ellwart J Kunz-Schughart LA Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells . Cell Stress Chaperones ( 2003 ) 8 ( 4 ): 348–60 .   10.1379/1466-1268(2003)008<0348:hspria>2.0.co;2 

  130. 130 Murshid A Gong J Calderwood SK The role of heat shock proteins in antigen cross presentation . Front Immunol ( 2012 ) 3 : 63 .   10.3389/fimmu.2012.00063 22566944 

  131. 131 Murshid A Theriault J Gong J Calderwood SK Investigating receptors for extracellular heat shock proteins . Methods Mol Biol ( 2011 ) 787 : 289 – 302 .   10.1007/978-1-61779-295-3_22 21898244 

  132. 132 Borges TJ Wieten L van Herwijnen MJ Broere F van der Zee R Bonorino C The anti-inflammatory mechanisms of Hsp70 . Front Immunol ( 2012 ) 3 : 95   10.3389/fimmu.2012.00095 22566973 

  133. 133 Multhoff G Pfister K Gehrmann M Hantschel M Gross C Hafner M A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity . Cell Stress Chaperones ( 2001 ) 6 ( 4 ): 337–44 .   10.1379/1466-1268(2001)006<0337:AMHPSN>2.0.CO;2 

  134. 134 Mbofung RM McKenzie JA Malu S Zhang M Peng W Liu C HSP90 inhibition enhances cancer immunotherapy by upregulating interferon response genes . Nat Commun ( 2017 ) 8 ( 1 ): 451 .   10.1038/s41467-017-00449-z 28878208 

  135. 135 Longworth MS Laimins LA Histone deacetylase 3 localizes to the plasma membrane and is a substrate of Src . Oncogene ( 2006 ) 25 ( 32 ): 4495–500 .   10.1038/sj.onc.1209473 

  136. 136 Zhang X Yuan Z Zhang Y Yong S Salas-Burgos A Koomen J HDAC6 modulates cell motility by altering the acetylation level of cortactin . Mol Cell ( 2007 ) 27 ( 2 ): 197 – 213 .   10.1016/j.molcel.2007.05.033 17643370 

  137. 137 Choudhary C Kumar C Gnad F Nielsen ML Rehman M Walther TC Lysine acetylation targets protein complexes and co-regulates major cellular functions . Science ( 2009 ) 325 ( 5942 ): 834–40 .   10.1126/science.1175371 

  138. 138 Gregoretti IV Lee YM Goodson HV Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis . J Mol Biol ( 2004 ) 338 ( 1 ): 17 – 31 .   10.1016/j.jmb.2004.02.006 15050820 

  139. 139 Glozak MA Sengupta N Zhang X Seto E Acetylation and deacetylation of non-histone proteins . Gene ( 2005 ) 363 : 15 – 23 .   10.1016/j.gene.2005.09.010 16289629 

  140. 140 Ocker M Deacetylase inhibitors - focus on non-histone targets and effects . World J Biol Chem ( 2010 ) 1 ( 5 ): 55 – 61 .   10.4331/wjbc.v1.i5.55 21540990 

  141. 141 Ashburner BP Westerheide SD Baldwin AS Jr The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression . Mol Cell Biol ( 2001 ) 21 ( 20 ): 7065–77 .   10.1128/mcb.21.20.7065-7077.2001 

  142. 142 von Burstin J Eser S Paul MC Seidler B Brandl M Messer M E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex . Gastroenterology ( 2009 ) 137 ( 1 ): 361 – 71, 71.e1-5 .   10.1053/j.gastro.2009.04.004 19362090 

  143. 143 Soriano FX Chawla S Skehel P Hardingham GE SMRT-mediated co-shuttling enables export of class IIa HDACs independent of their CaM kinase phosphorylation sites . J Neurochem ( 2013 ) 124 ( 1 ): 26 – 35 .   10.1111/jnc.12058 23083128 

  144. 144 Johnstone RW Licht JD Histone deacetylase inhibitors in cancer therapy: is transcription the primary target ? Cancer Cell ( 2003 ) 4 ( 1 ): 13–8 .   10.1016/s1535-6108(03)00165-x 

  145. 145 Cheng F Lienlaf M Wang HW Perez-Villarroel P Lee C Woan K A novel role for histone deacetylase 6 in the regulation of the tolerogenic STAT3/IL-10 pathway in APCs . J Immunol ( 2014 ) 193 ( 6 ): 2850–62 .   10.4049/jimmunol.1302778 

  146. 146 Beier UH Akimova T Liu Y Wang L Hancock WW Histone/protein deacetylases control Foxp3 expression and the heat shock response of T-regulatory cells . Curr Opin Immunol ( 2011 ) 23 ( 5 ): 670–8 .   10.1016/j.coi.2011.07.002 

  147. 147 Placek K Coffre M Maiella S Bianchi E Rogge L Genetic and epigenetic networks controlling T helper 1 cell differentiation . Immunology ( 2009 ) 127 ( 2 ): 155–62 .   10.1111/j.1365-2567.2009.03059.x 

  148. 148 Magner WJ Kazim AL Stewart C Romano MA Catalano G Grande C II, and CD40 gene expression by histone deacetylase inhibitors . J Immunol ( 2000 ) 165 ( 12 ): 7017–24 .   10.4049/jimmunol.165.12.7017 

  149. 149 Skov S Pedersen MT Andresen L Straten PT Woetmann A Odum N Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B . Cancer Res ( 2005 ) 65 ( 23 ): 11136–45 .   10.1158/0008-5472.Can-05-0599 

  150. 150 Woan KV Lienlaf M Perez-Villaroel P Lee C Cheng F Knox T Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: Enhanced antitumor immunity and impaired cell proliferation . Mol Oncol ( 2015 ) 9 ( 7 ): 1447–57 .   10.1016/j.molonc.2015.04.002 

  151. 151 Woods DM Woan K Cheng F Wang H Perez-Villarroel P Lee C The antimelanoma activity of the histone deacetylase inhibitor panobinostat (LBH589) is mediated by direct tumor cytotoxicity and increased tumor immunogenicity . Melanoma Res ( 2013 ) 23 ( 5 ): 341–8 .   10.1097/CMR.0b013e328364c0ed 

  152. 152 Villagra A Sotomayor EM Seto E Histone deacetylases and the immunological network: implications in cancer and inflammation . Oncogene ( 2010 ) 29 ( 2 ): 157–73 .   10.1038/onc.2009.334 

  153. 153 Zhong H May MJ Jimi E Ghosh S The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1 . Mol Cell ( 2002 ) 9 ( 3 ): 625–36 .   10.1016/s1097-2765(02)00477-x 

  154. 154 Licciardi PV Karagiannis TC Regulation of immune responses by histone deacetylase inhibitors . ISRN Hematol ( 2012 ) 2012 : 690901 .   10.5402/2012/690901 22461998 

  155. 155 Akimova T Beier UH Liu Y Wang L Hancock WW Histone/protein deacetylases and T-cell immune responses . Blood ( 2012 ) 119 ( 11 ): 2443–51 .   10.1182/blood-2011-10-292003 

  156. 156 Gialitakis M Kretsovali A Spilianakis C Kravariti L Mages J Hoffmann R Coordinated changes of histone modifications and HDAC mobilization regulate the induction of MHC class II genes by Trichostatin A . Nucleic Acids Res ( 2006 ) 34 ( 3 ): 765–72 .   10.1093/nar/gkj462 

  157. 157 Witt O Lindemann R HDAC inhibitors: magic bullets, dirty drugs or just another targeted therapy . Cancer Lett ( 2009 ) 280 ( 2 ): 123–4 .   10.1016/j.canlet.2009.02.038 

  158. 158 Karagiannis TC El-Osta A Will broad-spectrum histone deacetylase inhibitors be superseded by more specific compounds ? Leukemia ( 2007 ) 21 ( 1 ): 61–5 .   10.1038/sj.leu.2404464 

  159. 159 Maeda T Towatari M Kosugi H Saito H Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells . Blood ( 2000 ) 96 ( 12 ): 3847–56 . 

  160. 160 Armeanu S Bitzer M Lauer UM Venturelli S Pathil A Krusch M Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate . Cancer Res ( 2005 ) 65 ( 14 ): 6321–9 .   10.1158/0008-5472.CAN-04-4252 

  161. 161 Villagra A Cheng F Wang HW Suarez I Glozak M Maurin M The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance . Nat Immunol ( 2009 ) 10 ( 1 ): 92 – 100 .   10.1038/ni.1673 19011628 

  162. 162 Woods DM Sodré AL Villagra A Sarnaik A Sotomayor EM Weber J HDAC Inhibition Upregulates PD-1 Ligands in Melanoma and Augments Immunotherapy with PD-1 Blockade . Cancer Immunol Res ( 2015 ) 3 ( 12 ): 1375–85 .   10.1158/2326-6066.Cir-15-0077-t 

  163. 163 Ishikawa H Barber GN STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling . Nature ( 2008 ) 455 ( 7213 ): 674–8 .   10.1038/nature07317 

  164. 164 Desmet CJ Ishii KJ Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination . Nat Rev Immunol ( 2012 ) 12 ( 7 ): 479–91 .   10.1038/nri3247 

  165. 165 Ishikawa H Ma Z Barber GN STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity . Nature ( 2009 ) 461 ( 7265 ): 788–92 .   10.1038/nature08476 

  166. 166 Barber GN STING: infection, inflammation and cancer . Nat Rev Immunol ( 2015 ) 15 ( 12 ): 760–70 .   10.1038/nri3921 

  167. 167 Chen Q Sun L Chen ZJ Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing . Nat Immunol ( 2016 ) 17 ( 10 ): 1142–9 .   10.1038/ni.3558 

  168. 168 Sun L Wu J Du F Chen X Chen ZJ Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway . Science ( 2013 ) 339 ( 6121 ): 786–91 .   10.1126/science.1232458 

  169. 169 Wu J Sun L Chen X Du F Shi H Chen C Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA . Science ( 2013 ) 339 ( 6121 ): 826–30 .   10.1126/science.1229963 

  170. 170 Abe T Barber GN Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1 . J Virol ( 2014 ) 88 ( 10 ): 5328–41 .   10.1128/jvi.00037-14 

  171. 171 Woo SR Fuertes MB Corrales L Spranger S Furdyna MJ Leung MY STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors . Immunity ( 2014 ) 41 ( 5 ): 830–42 .   10.1016/j.immuni.2014.10.017 

  172. 172 Sivick KE Desbien AL Glickman LH Reiner GL Corrales L Surh NH Magnitude of Therapeutic STING Activation Determines CD8(+) T Cell-Mediated Anti-tumor Immunity . Cell Rep ( 2018 ) 25 ( 11 ): 3074–85 .   10.1016/j.celrep.2018.11.047 

  173. 173 Deng L Liang H Xu M Yang X Burnette B Arina A STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors . Immunity ( 2014 ) 41 ( 5 ): 843–52 .   10.1016/j.immuni.2014.10.019 

  174. 174 Klarquist J Hennies CM Lehn MA Reboulet RA Feau S Janssen EM STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells . J Immunol ( 2014 ) 193 ( 12 ): 6124–34 .   10.4049/jimmunol.1401869 

  175. 175 Ohkuri T Ghosh A Kosaka A Zhu J Ikeura M David M STING contributes to antiglioma immunity via triggering type I IFN signals in the tumor microenvironment . Cancer Immunol Res ( 2014 ) 2 ( 12 ): 1199–208 .   10.1158/2326-6066.CIR-14-0099 

  176. 176 Rivera Vargas T Benoit-Lizon I Apetoh L Rationale for stimulator of interferon genes-targeted cancer immunotherapy . Eur J Cancer ( 2017 ) 75 : 86 – 97 .   10.1016/j.ejca.2016.12.028 28219022 

  177. 177 Jeremiah N Neven B Gentili M Callebaut I Maschalidi S Stolzenberg MC Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations . J Clin Invest ( 2014 ) 124 ( 12 ): 5516–20 .   10.1172/JCI79100 

  178. 178 Liu Y Jesus AA Marrero B Yang D Ramsey SE Sanchez GAM Activated STING in a vascular and pulmonary syndrome . N Engl J Med ( 2014 ) 371 ( 6 ): 507–18 .   10.1056/NEJMoa1312625 

  179. 179 Melki I Rose Y Uggenti C Van Eyck L Frémond ML Kitabayashi N Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling . J Allergy Clin Immunol ( 2017 ) 140 ( 2 ): 543 – 52.e5 .   10.1016/j.jaci.2016.10.031 28087229 

  180. 180 König N Fiehn C Wolf C Schuster M Cura Costa E Tüngler V Familial chilblain lupus due to a gain-of-function mutation in STING . Ann Rheum Dis ( 2017 ) 76 ( 2 ): 468–72 .   10.1136/annrheumdis-2016-209841 

  181. 181 Dobbs N Burnaevskiy N Chen D Gonugunta VK Alto NM Yan N STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease . Cell Host Microbe ( 2015 ) 18 ( 2 ): 157–68 .   10.1016/j.chom.2015.07.001 

  182. 182 Wu J Chen YJ Dobbs N Sakai T Liou J Miner JJ STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death . J Exp Med ( 2019 ) 216 ( 4 ): 867–83 .   10.1084/jem.20182192 

  183. 183 Kim S Koch P Li L Peshkin L Mitchison TJ Evidence for a role of calcium in STING signaling . bioRxiv ( 2017 ) 145854 .   10.1101/145854 

  184. 184 Srikanth S Woo JS Wu B El-Sherbiny YM Leung J Chupradit K The Ca(2+) sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum . Nat Immunol ( 2019 ) 20 ( 2 ): 152–62 .   10.1038/s41590-018-0287-8 

  185. 185 Liu JJ Ching LM Goldthorpe M Sutherland R Baguley BC Kirker JA Antitumour action of 5,6-dimethylxanthenone-4-acetic acid in rats bearing chemically induced primary mammary tumours . Cancer Chemother Pharmacol ( 2007 ) 59 ( 5 ): 661–9 .   10.1007/s00280-006-0321-7 

  186. 186 Lara PN Jr. Douillard JY Nakagawa K von Pawel J McKeage MJ Albert I Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer . J Clin Oncol ( 2011 ) 29 ( 22 ): 2965–71 .   10.1200/jco.2011.35.0660 

  187. 187 Fu J Kanne DB Leong M Glickman LH McWhirter SM Lemmens E STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade . Sci Transl Med ( 2015 ) 7 ( 283 ): 283ra52 .   10.1126/scitranslmed.aaa4306 

  188. 188 Moore E Clavijo PE Davis R Cash H Van Waes C Kim Y Established T Cell-Inflamed Tumors Rejected after Adaptive Resistance Was Reversed by Combination STING Activation and PD-1 Pathway Blockade . Cancer Immunol Res ( 2016 ) 4 ( 12 ): 1061–71 .   10.1158/2326-6066.Cir-16-0104 

  189. 189 Tatsukawa H Furutani Y Hitomi K Kojima S Transglutaminase 2 has opposing roles in the regulation of cellular functions as well as cell growth and death . Cell Death Dis ( 2016 ) 7 ( 6 ): e2244 .   10.1038/cddis.2016.150 27253408 

  190. 190 Haddox MK Russell DH Increased nuclear conjugated polyamines and transglutaminase during liver regeneration . Proc Natl Acad Sci U S A ( 1981 ) 78 ( 3 ): 1712–6 .   10.1073/pnas.78.3.1712 

  191. 191 Fesus L Thomazy V Falus A Induction and activation of tissue transglutaminase during programmed cell death . FEBS Lett ( 1987 ) 224 ( 1 ): 104–8 .   10.1016/0014-5793(87)80430-1 

  192. 192 Nakaoka H Perez DM Baek KJ Das T Husain A Misono K Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function . Science ( 1994 ) 264 ( 5165 ): 1593–6 .   10.1126/science.7911253 

  193. 193 Diaz-Hidalgo L Altuntas S Rossin F D’Eletto M Marsella C Farrace MG Transglutaminase type 2-dependent selective recruitment of proteins into exosomes under stressful cellular conditions . Biochim Biophys Acta ( 2016 ) 1863 ( 8 ): 2084–92 .   10.1016/j.bbamcr.2016.05.005 

  194. 194 Mishra S Murphy LJ The p53 oncoprotein is a substrate for tissue transglutaminase kinase activity . Biochem Biophys Res Commun ( 2006 ) 339 ( 2 ): 726–30 .   10.1016/j.bbrc.2005.11.071 

  195. 195 Hasegawa G Suwa M Ichikawa Y Ohtsuka T Kumagai S Kikuchi M A novel function of tissue-type transglutaminase: protein disulphide isomerase . Biochem J ( 2003 ) 373 ( Pt 3 ): 793 – 803 .   10.1042/BJ20021084 12737632 

  196. 196 Singh G Zhang J Ma Y Cerione RA Antonyak MA The Different Conformational States of Tissue Transglutaminase Have Opposing Affects on Cell Viability . J Biol Chem ( 2016 ) 291 ( 17 ): 9119–32 .   10.1074/jbc.M115.699108 

  197. 197 Mann AP Verma A Sethi G Manavathi B Wang H Fok JY Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-kappaB in cancer cells: delineation of a novel pathway . Cancer Res ( 2006 ) 66 ( 17 ): 8788–95 .   10.1158/0008-5472.Can-06-1457 

  198. 198 Shrestha R Tatsukawa H Shrestha R Ishibashi N Matsuura T Kagechika H Molecular mechanism by which acyclic retinoid induces nuclear localization of transglutaminase 2 in human hepatocellular carcinoma cells . Cell Death Dis ( 2015 ) 6 ( 12 ): e2002 .   10.1038/cddis.2015.339 26633708 

  199. 199 Yoo JO Lim YC Kim YM Ha KS Transglutaminase 2 promotes both caspase-dependent and caspase-independent apoptotic cell death via the calpain/Bax protein signaling pathway . J Biol Chem ( 2012 ) 287 ( 18 ): 14377–88 .   10.1074/jbc.M111.326074 

  200. 200 Huang L Xu AM Liu W Transglutaminase 2 in cancer . Am J Cancer Res ( 2015 ) 5 ( 9 ): 2756–76 . 

  201. 201 Tabolacci C De Martino A Mischiati C Feriotto G Beninati S The Role of Tissue Transglutaminase in Cancer Cell Initiation, Survival and Progression . Med Sci (Basel) ( 2019 ) 7 ( 2 ).   10.3390/medsci7020019 

  202. 202 Fisher ML Adhikary G Xu W Kerr C Keillor JW Eckert RL Type II transglutaminase stimulates epidermal cancer stem cell epithelial-mesenchymal transition . Oncotarget ( 2015 ) 6 ( 24 ): 20525–39 .   10.18632/oncotarget.3890 

  203. 203 Su M Alonso S Jones JW Yu J Kane MA Jones RJ All-Trans Retinoic Acid Activity in Acute Myeloid Leukemia: Role of Cytochrome P450 Enzyme Expression by the Microenvironment . PLoS One ( 2015 ) 10 ( 6 ): e0127790 .   10.1371/journal.pone.0127790 26047326 

  204. 204 Brown KD Transglutaminase 2 and NF-κB: an odd couple that shapes breast cancer phenotype . Breast Cancer Res Treat ( 2013 ) 137 ( 2 ): 329–36 .   10.1007/s10549-012-2351-7 

  205. 205 Bayardo M Punzi F Bondar C Chopita N Chirdo F Transglutaminase 2 expression is enhanced synergistically by interferon-γ and tumour necrosis factor-α in human small intestine . Clin Exp Immunol ( 2012 ) 168 ( 1 ): 95 – 104 .   10.1111/j.1365-2249.2011.04545.x 22385244 

  206. 206 Cao L Shao M Schilder J Guise T Mohammad KS Matei D Tissue transglutaminase links TGF-β, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer . Oncogene ( 2012 ) 31 ( 20 ): 2521–34 .   10.1038/onc.2011.429 

  207. 207 Wang Z Perez M Lee ES Kojima S Griffin M The functional relationship between transglutaminase 2 and transforming growth factor β1 in the regulation of angiogenesis and endothelial-mesenchymal transition . Cell Death Dis ( 2017 ) 8 ( 9 ): e3032 .   10.1038/cddis.2017.399 28880274 

  208. 208 Kim JH Hong JM Jeong EM Lee WJ Kim HR Kang JS Lack of transglutaminase 2 diminished T-cell responses in mice . Immunology ( 2014 ) 142 ( 3 ): 506–16 .   10.1111/imm.12282 

  209. 209 Wang Z Li J Gao Y Janowitz T Fearon D Transglutaminase-2 of pancreatic cancer cells assembles a CXCL12-keratin 19-coat that mediates the resistance to immunotherapy . bioRxiv ( 2019 ) 776419 .   10.1101/776419 

  210. 210 Rodríguez-Pascual F Redondo-Horcajo M Magán-Marchal N Lagares D Martínez-Ruiz A Kleinert H Glyceraldehyde-3-phosphate dehydrogenase regulates endothelin-1 expression by a novel, redox-sensitive mechanism involving mRNA stability . Mol Cell Biol ( 2008 ) 28 ( 23 ): 7139–55 .   10.1128/mcb.01145-08 

  211. 211 Tisdale EJ Azizi F Artalejo CR Rab2 utilizes glyceraldehyde-3-phosphate dehydrogenase and protein kinase C{iota} to associate with microtubules and to recruit dynein . J Biol Chem ( 2009 ) 284 ( 9 ): 5876–84 .   10.1074/jbc.M807756200 

  212. 212 Revillion F Pawlowski V Hornez L Peyrat JP Glyceraldehyde-3-phosphate dehydrogenase gene expression in human breast cancer . Eur J Cancer ( 2000 ) 36 ( 8 ): 1038–42 .   10.1016/s0959-8049(00)00051-4 

  213. 213 Kim JW Kim TE Kim YK Kim YW Kim SJ Lee JM Antisense oligodeoxynucleotide of glyceraldehyde-3-phosphate dehydrogenase gene inhibits cell proliferation and induces apoptosis in human cervical carcinoma cell lines . Antisense Nucleic Acid Drug Dev ( 1999 ) 9 ( 6 ): 507–13 .   10.1089/oli.1.1999.9.507 

  214. 214 Zhang JY Zhang F Hong CQ Giuliano AE Cui XJ Zhou GJ Critical protein GAPDH and its regulatory mechanisms in cancer cells . Cancer Biol Med ( 2015 ) 12 ( 1 ): 10 – 22 .   10.7497/j.issn.2095-3941.2014.0019 25859407 

  215. 215 Takaoka Y Goto S Nakano T Tseng HP Yang SM Kawamoto S Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) prevents lipopolysaccharide (LPS)-induced, sepsis-related severe acute lung injury in mice . Sci Rep ( 2014 ) 4 : 5204 .   10.1038/srep05204 24902773 

  216. 216 Raje CI Kumar S Harle A Nanda JS Raje M The macrophage cell surface glyceraldehyde-3-phosphate dehydrogenase is a novel transferrin receptor . J Biol Chem ( 2007 ) 282 ( 5 ): 3252–61 .   10.1074/jbc.M608328200 

  217. 217 Mookherjee N Lippert DN Hamill P Falsafi R Nijnik A Kindrachuk J Intracellular receptor for human host defense peptide LL-37 in monocytes . J Immunol ( 2009 ) 183 ( 4 ): 2688–96 .   10.4049/jimmunol.0802586 

  218. 218 Nakano T Goto S Takaoka Y Tseng HP Fujimura T Kawamoto S A novel moonlight function of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for immunomodulation . Biofactors ( 2018 ) 44 ( 6 ): 597 – 608 .   10.1002/biof.1379 28753256 

  219. 219 Takenouchi T Tsukimoto M Iwamaru Y Sugama S Sekiyama K Sato M Extracellular ATP induces unconventional release of glyceraldehyde-3-phosphate dehydrogenase from microglial cells . Immunol Lett ( 2015 ) 167 ( 2 ): 116–24 .   10.1016/j.imlet.2015.08.002 

  220. 220 Michalak M Groenendyk J Szabo E Gold LI Opas M Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum . Biochem J ( 2009 ) 417 ( 3 ): 651–66 .   10.1042/BJ20081847 

  221. 221 Baruah P Dumitriu IE Malik TH Cook HT Dyson J Scott D C1q enhances IFN-gamma production by antigen-specific T cells via the CD40 costimulatory pathway on dendritic cells . Blood ( 2009 ) 113 ( 15 ): 3485–93 .   10.1182/blood-2008-06-164392 

  222. 222 Panaretakis T Kepp O Brockmeier U Tesniere A Bjorklund AC Chapman DC Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death . EMBO J ( 2009 ) 28 ( 5 ): 578–90 .   10.1038/emboj.2009.1 

  223. 223 Wang Y Xie J Liu Z Fu H Huo Q Gu Y Association of calreticulin expression with disease activity and organ damage in systemic lupus erythematosus patients . Exp Ther Med ( 2017 ) 13 ( 5 ): 2577–83 .   10.3892/etm.2017.4235 

  224. 224 Duo CC Gong FY He XY Li YM Wang J Zhang JP Soluble calreticulin induces tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 production by macrophages through mitogen-activated protein kinase (MAPK) and NFκB signaling pathways . Int J Mol Sci ( 2014 ) 15 ( 2 ): 2916–28 .   10.3390/ijms15022916 

  225. 225 Wang HT Lee HI Guo JH Chen SH Liao ZK Huang KW Calreticulin promotes tumor lymphocyte infiltration and enhances the antitumor effects of immunotherapy by up-regulating the endothelial expression of adhesion molecules . Int J Cancer ( 2012 ) 130 ( 12 ): 2892–902 .   10.1002/ijc.26339 

  226. 226 Kasikova L Hensler M Truxova I Skapa P Laco J Belicova L Calreticulin exposure correlates with robust adaptive antitumor immunity and favorable prognosis in ovarian carcinoma patients . J Immunother Cancer ( 2019 ) 7 ( 1 ): 312 .   10.1186/s40425-019-0781-z 31747968 

  227. 227 Ni M Wei W Wang Y Zhang N Ding H Shen C Serum levels of calreticulin in correlation with disease activity in patients with rheumatoid arthritis . J Clin Immunol ( 2013 ) 33 ( 5 ): 947–53 .   10.1007/s10875-013-9885-2 

  228. 228 de Bruyn M Wiersma VR Helfrich W Eggleton P Bremer E The ever-expanding immunomodulatory role of calreticulin in cancer immunity . Front Oncol ( 2015 ) 5 : 35 .   10.3389/fonc.2015.00035 25750898 

  229. 229 Gardai SJ McPhillips KA Frasch SC Janssen WJ Starefeldt A Murphy-Ullrich JE Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte . Cell ( 2005 ) 123 ( 2 ): 321–34 .   10.1016/j.cell.2005.08.032 

  230. 230 Chao MP Jaiswal S Weissman-Tsukamoto R Alizadeh AA Gentles AJ Volkmer J Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47 . Sci Transl Med ( 2010 ) 2 ( 63 ): 63ra94 .   10.1126/scitranslmed.3001375 

  231. 231 Jaiswal S Jamieson CH Pang WW Park CY Chao MP Majeti R CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis . Cell ( 2009 ) 138 ( 2 ): 271–85 .   10.1016/j.cell.2009.05.046 

  232. 232 Liu P Zhao L Kroemer G Kepp O Secreted calreticulin mutants subvert anticancer immunosurveillance . Oncoimmunology ( 2020 ) 9 ( 1 ): 1708126 .   10.1080/2162402x.2019.1708126 32002304 

  233. 233 Alvarez-Paggi D Hannibal L Castro MA Oviedo-Rouco S Demicheli V Tortora V Multifunctional Cytochrome c: Learning New Tricks from an Old Dog . Chem Rev ( 2017 ) 117 ( 21 ): 13382–460 .   10.1021/acs.chemrev.7b00257 

  234. 234 Martinez-Fabregas J Diaz-Moreno I Gonzalez-Arzola K Diaz-Quintana A De la Rosa MA A common signalosome for programmed cell death in humans and plants . Cell Death Dis ( 2014 ) 5 : e1314 .   10.1038/cddis.2014.280 24991766 

  235. 235 Kumar R Bhat TA Walsh EM Chaudhary AK O’Malley J Rhim JS Cytochrome c Deficiency Confers Apoptosome and Mitochondrial Dysfunction in African-American Men with Prostate Cancer . Cancer Res ( 2019 ) 79 ( 7 ): 1353–68 .   10.1158/0008-5472.CAN-18-2383 

  236. 236 Kalpage HA Bazylianska V Recanati MA Fite A Liu J Wan J Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis . FASEB J ( 2019 ) 33 ( 2 ): 1540–53 .   10.1096/fj.201801417R 

  237. 237 Li K Li Y Shelton JM Richardson JA Spencer E Chen ZJ Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis . Cell ( 2000 ) 101 ( 4 ): 389–99 .   10.1016/s0092-8674(00)80849-1 

  238. 238 Morriss GM New DA Effect of oxygen concentration on morphogenesis of cranial neural folds and neural crest in cultured rat embryos . J Embryol Exp Morphol ( 1979 ) 54 : 17 – 35 . 528863 

  239. 239 Burke PJ Mitochondria, Bioenergetics and Apoptosis in Cancer . Trends Cancer ( 2017 ) 3 ( 12 ): 857–70 .   10.1016/j.trecan.2017.10.006 

  240. 240 Ow YP Green DR Hao Z Mak TW Cytochrome c: functions beyond respiration . Nat Rev Mol Cell Biol ( 2008 ) 9 ( 7 ): 532–42 .   10.1038/nrm2434 

  241. 241 Kelly DP Scarpulla RC Transcriptional regulatory circuits controlling mitochondrial biogenesis and function . Genes Dev ( 2004 ) 18 ( 4 ): 357–68 .   10.1101/gad.1177604 

  242. 242 Scarpulla RC Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator . Ann N Y Acad Sci ( 2008 ) 1147 : 321–34 .   10.1196/annals.1427.006 

  243. 243 Scarpulla RC Nuclear control of respiratory gene expression in mammalian cells . J Cell Biochem ( 2006 ) 97 ( 4 ): 673–83 .   10.1002/jcb.20743 

  244. 244 Furuse M Sasaki H Tsukita S Manner of interaction of heterogeneous claudin species within and between tight junction strands . J Cell Biol ( 1999 ) 147 ( 4 ): 891 – 903 .   10.1083/jcb.147.4.891 10562289 

  245. 245 Piontek J Winkler L Wolburg H Muller SL Zuleger N Piehl C Formation of tight junction: determinants of homophilic interaction between classic claudins . FASEB J ( 2008 ) 22 ( 1 ): 146–58 .   10.1096/fj.07-8319com 

  246. 246 Lal-Nag M Morin PJ The claudins . Genome Biol ( 2009 ) 10 ( 8 ): 235 .   10.1186/gb-2009-10-8-235 19706201 

  247. 247 Ruffer C Gerke V The C-terminal cytoplasmic tail of claudins 1 and 5 but not its PDZ-binding motif is required for apical localization at epithelial and endothelial tight junctions . Eur J Cell Biol ( 2004 ) 83 ( 4 ): 135–44 .   10.1078/0171-9335-00366 

  248. 248 Angelow S Ahlstrom R Yu AS Biology of claudins . Am J Physiol Renal Physiol ( 2008 ) 295 ( 4 ): F867–76 .   10.1152/ajprenal.90264.2008 

  249. 249 Gunzel D Yu AS Claudins and the modulation of tight junction permeability . Physiol Rev ( 2013 ) 93 ( 2 ): 525–69 .   10.1152/physrev.00019.2012 

  250. 250 Tabaries S Siegel PM The role of claudins in cancer metastasis . Oncogene ( 2017 ) 36 ( 9 ): 1176–90 .   10.1038/onc.2016.289 

  251. 251 Che J Yang Y Xiao J Zhao P Yan B Dong S Decreased expression of claudin-3 is associated with a poor prognosis and EMT in completely resected squamous cell lung carcinoma . Tumour Biol ( 2015 ) 36 ( 8 ): 6559–68 .   10.1007/s13277-015-3350-1 

  252. 252 Sheehan GM Kallakury BV Sheehan CE Fisher HA Kaufman RP Jr Ross JS Loss of claudins-1 and -7 and expression of claudins-3 and -4 correlate with prognostic variables in prostatic adenocarcinomas . Hum Pathol ( 2007 ) 38 ( 4 ): 564–9 .   10.1016/j.humpath.2006.11.007 

  253. 253 Landers KA Samaratunga H Teng L Buck M Burger MJ Scells B Identification of claudin-4 as a marker highly overexpressed in both primary and metastatic prostate cancer . Br J Cancer ( 2008 ) 99 ( 3 ): 491 – 501 .   10.1038/sj.bjc.6604486 18648369 

  254. 254 Szasz AM Majoros A Rosen P Srivastava S Dobi A Szendroi A Prognostic potential of ERG (ETS-related gene) expression in prostatic adenocarcinoma . Int Urol Nephrol ( 2013 ) 45 ( 3 ): 727–33 .   10.1007/s11255-013-0406-2 

  255. 255 Luo J Chimge NO Zhou B Flodby P Castaldi A Firth AL CLDN18.1 attenuates malignancy and related signaling pathways of lung adenocarcinoma in vivo and in vitro . Int J Cancer ( 2018 ) 143 ( 12 ): 3169–80 .   10.1002/ijc.31734 

  256. 256 Dhawan P Singh AB Deane NG No Y Shiou SR Schmidt C Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer . J Clin Invest ( 2005 ) 115 ( 7 ): 1765–76 .   10.1172/JCI24543 

  257. 257 French AD Fiori JL Camilli TC Leotlela PD O’Connell MP Frank BP PKC and PKA phosphorylation affect the subcellular localization of claudin-1 in melanoma cells . Int J Med Sci ( 2009 ) 6 ( 2 ): 93 – 101 .   10.7150/ijms.6.93 19305641 

  258. 258 Cuevas ME Gaska JM Gist AC King JM Sheller RA Todd MC Estrogen-dependent expression and subcellular localization of the tight junction protein claudin-4 in HEC-1A endometrial cancer cells . Int J Oncol ( 2015 ) 47 ( 2 ): 650–6 .   10.3892/ijo.2015.3030 

  259. 259 Ikari A Watanabe R Sato T Taga S Shimobaba S Yamaguchi M Nuclear distribution of claudin-2 increases cell proliferation in human lung adenocarcinoma cells . Biochim Biophys Acta ( 2014 ) 1843 ( 9 ): 2079–88 .   10.1016/j.bbamcr.2014.05.017 

  260. 260 Zhou B Flodby P Luo J Castillo DR Liu Y Yu FX Claudin-18-mediated YAP activity regulates lung stem and progenitor cell homeostasis and tumorigenesis . J Clin Invest ( 2018 ) 128 ( 3 ): 970–84 .   10.1172/JCI90429 

  261. 261 Sims GP Rowe DC Rietdijk ST Herbst R Coyle AJ HMGB1 and RAGE in inflammation and cancer . Annu Rev Immunol ( 2010 ) 28 : 367–88 .   10.1146/annurev.immunol.021908.132603 

  262. 262 Yang H Lundbäck P Ottosson L Erlandsson-Harris H Venereau E Bianchi ME Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1) . Mol Med ( 2012 ) 18 ( 1 ): 250–9 .   10.2119/molmed.2011.00389 

  263. 263 Schiraldi M Raucci A Muñoz LM Livoti E Celona B Venereau E HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4 . J Exp Med ( 2012 ) 209 ( 3 ): 551–63 .   10.1084/jem.20111739 

  264. 264 De Sanctis F Sandri S Martini M Mazzocco M Fiore A Trovato R Hyperthermic treatment at 56 °C induces tusmour-specific immune protection in a mouse model of prostate cancer in both prophylactic and therapeutic immunization regimens . Vaccine ( 2018 ) 36 ( 25 ): 3708–16 .   10.1016/j.vaccine.2018.05.010 

  265. 265 He Y Zha J Wang Y Liu W Yang X Yu P Tissue damage-associated “danger signals” influence T-cell responses that promote the progression of preneoplasia to cancer . Cancer Res ( 2013 ) 73 ( 2 ): 629–39 .   10.1158/0008-5472.Can-12-2704 

  266. 266 Bianchi ME Crippa MP Manfredi AA Mezzapelle R Rovere Querini P Venereau E High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair . Immunol Rev ( 2017 ) 280 ( 1 ): 74 – 82 .   10.1111/imr.12601 29027228 

  267. 267 Yanai H Ban T Taniguchi T High-mobility group box family of proteins: ligand and sensor for innate immunity . Trends Immunol ( 2012 ) 33 ( 12 ): 633–40 .   10.1016/j.it.2012.10.005 

  268. 268 Lotze MT Tracey KJ High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal . Nat Rev Immunol ( 2005 ) 5 ( 4 ): 331–42 .   10.1038/nri1594 

  269. 269 Yanai H Ban T Wang Z Choi MK Kawamura T Negishi H HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses . Nature ( 2009 ) 462 ( 7269 ): 99 – 103 .   10.1038/nature08512 19890330 

  270. 270 Tang D Kang R Livesey KM Cheh CW Farkas A Loughran P Endogenous HMGB1 regulates autophagy . J Cell Biol ( 2010 ) 190 ( 5 ): 881–92 .   10.1083/jcb.200911078 

  271. 271 Ito I Fukazawa J Yoshida M Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils . J Biol Chem ( 2007 ) 282 ( 22 ): 16336–44 .   10.1074/jbc.M608467200 

  272. 272 Andersson U Tracey KJ HMGB1 is a therapeutic target for sterile inflammation and infection . Annu Rev Immunol ( 2011 ) 29 : 139–62 .   10.1146/annurev-immunol-030409-101323 

  273. 273 Tang Y Zhao X Antoine D Xiao X Wang H Andersson U Regulation of Posttranslational Modifications of HMGB1 During Immune Responses . Antioxid Redox Signal ( 2016 ) 24 ( 12 ): 620–34 .   10.1089/ars.2015.6409 

  274. 274 Yang H Antoine DJ Andersson U Tracey KJ The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis . J Leukoc Biol ( 2013 ) 93 ( 6 ): 865–73 .   10.1189/jlb.1212662 

  275. 275 Kazama H Ricci JE Herndon JM Hoppe G Green DR Ferguson TA Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein . Immunity ( 2008 ) 29 ( 1 ): 21 – 32 .   10.1016/j.immuni.2008.05.013 18631454 

  276. 276 Richard SA Jiang Y Xiang LH Zhou S Wang J Su Z Post-translational modifications of high mobility group box 1 and cancer . Am J Transl Res ( 2017 ) 9 ( 12 ): 5181–96 . 

  277. 277 Bonaldi T Talamo F Scaffidi P Ferrera D Porto A Bachi A Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion . EMBO J ( 2003 ) 22 ( 20 ): 5551–60 .   10.1093/emboj/cdg516 

  278. 278 Evankovich J Cho SW Zhang R Cardinal J Dhupar R Zhang L High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity . J Biol Chem ( 2010 ) 285 ( 51 ): 39888–97 .   10.1074/jbc.M110.128348 

  279. 279 Youn JH Shin JS Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion . J Immunol ( 2006 ) 177 ( 11 ): 7889–97 .   10.4049/jimmunol.177.11.7889 

  280. 280 Tang D Billiar TR Lotze MT A Janus tale of two active high mobility group box 1 (HMGB1) redox states . Mol Med ( 2012 ) 18 ( 1 ): 1360–2 .   10.2119/molmed.2012.00314 

  281. 281 Janko C Filipović M Munoz LE Schorn C Schett G Ivanović-Burmazović I Redox modulation of HMGB1-related signaling . Antioxid Redox Signal ( 2014 ) 20 ( 7 ): 1075–85 .   10.1089/ars.2013.5179 

  282. 282 Fucikova J Moserova I Urbanova L Bezu L Kepp O Cremer I Prognostic and Predictive Value of DAMPs and DAMP-Associated Processes in Cancer . Front Immunol ( 2015 ) 6 : 402 .   10.3389/fimmu.2015.00402 26300886 

  283. 283 Martinotti S Patrone M Ranzato E Emerging roles for HMGB1 protein in immunity, inflammation, and cancer . Immunotargets Ther ( 2015 ) 4 : 101–9 .   10.2147/itt.S58064 

  284. 284 Kang R Zhang Q Zeh H Lotze MT Tang D HMGB1 in cancer: good, bad, or both ? Clin Cancer Res ( 2013 ) 19 ( 15 ): 4046–57 .   10.1158/1078-0432.Ccr-13-0495 

  285. 285 Ostrand-Rosenberg S Beury DW Parker KH Horn LA Survival of the fittest: how myeloid-derived suppressor cells survive in the inhospitable tumor microenvironment . Cancer Immunol Immunother ( 2020 ) 69 ( 2 ): 215–21 .   10.1007/s00262-019-02388-8 

  286. 286 Parker KH Horn LA Ostrand-Rosenberg S High-mobility group box protein 1 promotes the survival of myeloid-derived suppressor cells by inducing autophagy . J Leukoc Biol ( 2016 ) 100 ( 3 ): 463–70 .   10.1189/jlb.3HI0715-305R 

  287. 287 Arnold T Michlmayr A Baumann S Burghuber C Pluschnig U Bartsch R Plasma HMGB-1 after the initial dose of epirubicin/docetaxel in cancer . Eur J Clin Invest ( 2013 ) 43 ( 3 ): 286–91 .   10.1111/eci.12043 

  288. 288 Liikanen I Koski A Merisalo-Soikkeli M Hemminki O Oksanen M Kairemo K Serum HMGB1 is a predictive and prognostic biomarker for oncolytic immunotherapy . Oncoimmunology ( 2015 ) 4 ( 3 ): e989771 .   10.4161/2162402x.2014.989771 25949903 

  289. 289 Mani M Chen C Amblee V Liu H Mathur T Zwicke G MoonProt: a database for proteins that are known to moonlight . Nucleic Acids Res ( 2015 ) 43 ( Database issue ): D277–82 .   10.1093/nar/gku954 

  290. 290 Franco-Serrano L Huerta M Hernández S Cedano J Perez-Pons J Piñol J Multifunctional Proteins: Involvement in Human Diseases and Targets of Current Drugs . Protein J ( 2018 ) 37 ( 5 ): 444–53 .   10.1007/s10930-018-9790-x 

  291. 291 Khan IK Kihara D Computational characterization of moonlighting proteins . Biochem Soc Trans ( 2014 ) 42 ( 6 ): 1780–5 .   10.1042/bst20140214 

  292. 292 Jung DW Kim WH Seo S Oh E Yim SH Ha HH Chemical targeting of GAPDH moonlighting function in cancer cells reveals its role in tubulin regulation . Chem Biol ( 2014 ) 21 ( 11 ): 1533–45 .   10.1016/j.chembiol.2014.08.017 

  293. 293 Albini E Coletti A Greco F Pallotta MT Mondanelli G Gargaro M Identification of a 2-propanol analogue modulating the non-enzymatic function of indoleamine 2,3-dioxygenase 1 . Biochem Pharmacol ( 2018 ) 158 : 286–97 .   10.1016/j.bcp.2018.10.033 

  294. 294 Sun S Du G Xue J Ma J Ge M Wang H PCC0208009 enhances the anti-tumor effects of temozolomide through direct inhibition and transcriptional regulation of indoleamine 2,3-dioxygenase in glioma models . Int J Immunopathol Pharmacol ( 2018 ) 32 : 2058738418787991 .   10.1177/2058738418787991 29993291 

  295. 295 Jeffery CJ An introduction to protein moonlighting . Biochem Soc Trans ( 2014 ) 42 ( 6 ): 1679–83 .   10.1042/BST20140226 

  296. 296 Singh N Bhalla N Moonlighting Proteins . Annu Rev Genet ( 2020 ).   10.1146/annurev-genet-030620-102906 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로