$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] On-site hydrogen production using heavy naphtha by maximizing the hydrogen output of a membrane reactor system

Journal of power sources, v.508, 2021년, pp.230332 -   

Yoo, Jae Young (Dept. of Mech. Eng., KAIST) ,  Lee, Jaemyung (Dept. of Mech. Eng., KAIST) ,  Han, Gwangwoo (Dept. of Mech. Eng., KAIST) ,  Harale, Aadesh (Research and Development Center, Saudi Aramco) ,  Katikaneni, Sai (Research and Development Center, Saudi Aramco) ,  Paglieri, Stephen N. (Research and Development Center, Saudi Aramco) ,  Bae, Joongmyeon (Dept. of Mech. Eng., KAIST)

Abstract AI-Helper 아이콘AI-Helper

Abstract Fuel cell electric vehicles have recently experienced rising demand. The geographic coverage of hydrogen stations, however, is limited. This study proposes an on-site hydrogen production system that converts heavy naphtha to high-purity hydrogen for remote areas without convenient access t...

Keyword

참고문헌 (72)

  1. Int. J. Hydrogen Energy Chapman 45 3883 2020 10.1016/j.ijhydene.2019.12.112 Societal penetration of hydrogen into the future energy system: impacts of policy, technology and carbon targets 

  2. Energy Mah 218 119475 2021 10.1016/j.energy.2020.119475 Targeting and scheduling of standalone renewable energy system with liquid organic hydrogen carrier as energy storage 

  3. Int. J. Hydrogen Energy Abe 44 15072 2019 10.1016/j.ijhydene.2019.04.068 Hydrogen energy, economy and storage: review and recommendation 

  4. Energy Environ. Sci. Staffell 12 463 2019 10.1039/C8EE01157E The role of hydrogen and fuel cells in the global energy system 

  5. Int. J. Hydrogen Energy Ajanovc 46 10049 2021 10.1016/j.ijhydene.2020.03.122 Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector 

  6. A. Leo, A. Kumar, “Fuel cell electric vehicles: the genesis of a new car era or myth-busting vehicle technology?”, Open Access Government. Available at: https://www.openaccessgovernment.org/vehicle-technology/52116/(accessed 1 April 2021). 

  7. Rustagi 2018 Current Status of Hydrogen Delivery and Dispensing Costs and Pathways to Future Cost Reductions 

  8. Christensen 2020 Assessment of Hydrogen Production Costs from Electrolysis: United States and Europe 

  9. Int. J. Hydrogen Energy Kurtz 45 32298 2020 10.1016/j.ijhydene.2019.10.014 Predicting demand for hydrogen station fueling 

  10. Rev. Chem. Eng. Baharudin 34 43 2017 10.1515/revce-2016-0040 Hydrogen applications and research activities in its production routes through catalytic hydrocarbon conversion 

  11. Renew. Sustain. Energy Rev. Nikolaidis 67 597 2017 10.1016/j.rser.2016.09.044 A comparative overview of hydrogen production processes 

  12. Nat. Catal. Zhou 3 454 2020 10.1038/s41929-020-0446-9 Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction 

  13. Int. J. Hydrogen Energy Gim 37 19138 2012 10.1016/j.ijhydene.2012.09.163 Analysis of the economy of scale and estimation of the future hydrogen production costs at on-site hydrogen refueling stations in Korea 

  14. Int. J. Hydrogen Energy Cheng 45 7423 2020 10.1016/j.ijhydene.2019.04.101 Single-step synthesized dual-layer hollow fiber membrane reactor for on-site hydrogen production through ammonia decomposition 

  15. Int. J. Hydrogen Energy Yang 41 8176 2016 10.1016/j.ijhydene.2015.10.154 Development of a stand-alone steam methane reformer for on-site hydrogen production 

  16. Prog. Nat. Sci.: Mater. International. Pei 30 751 2020 10.1016/j.pnsc.2020.08.015 Key technologies for polymer electrolyte membrane fuel cell systems fueled impure hydrogen 

  17. J. Power Sources Han 448 227465 2020 10.1016/j.jpowsour.2019.227465 Start-up strategy of a diesel reformer using the decomposition heat of hydrogen peroxide for subsea applications 

  18. Jechura 

  19. Comput. Chem. Eng. Ochoa-Estopier 59 178 2013 10.1016/j.compchemeng.2013.05.030 Operational optimization of crude oil distillation systems using artificial neural networks 

  20. Int. J. Sustain. Energy Qi 35 323 2016 10.1080/14786451.2014.895004 Combustion and emissions behavior for ethanol-gasoline-blended fuels in a multipoint electronic fuel injection engine 

  21. Int. J. Hydrogen Energy Katikaneni 39 4331 2014 10.1016/j.ijhydene.2013.12.172 On-site hydrogen production from transportation fuels: an overview and techno-economic assessment 

  22. Fuel Hasan 89 1095 2010 10.1016/j.fuel.2009.12.021 Heavy crude oil viscosity reduction and rheology for pipeline transportation 

  23. SAE Int. J. Engines Chang 6 101 2013 10.4271/2013-01-0267 Vehicle demonstration of naphtha fuel achieving both high efficiency and drivability with EURO6 Engine-out NOx emission 

  24. Energy Procedia Ravasio 148 1002 2018 10.1016/j.egypro.2018.08.061 Thermal efficiency of on-site small-scale hydrogen production technologies using liquid hydrocarbon fuels in comparison to electrolysis: a case study in Norway 

  25. Petrol. Sci. Technol. Albahri 37 275 2019 10.1080/10916466.2018.1539754 Grassroots petroleum refinery configuration for heavy oil processing 

  26. Appl. Energy Polanco Martínez 228 1550 2018 10.1016/j.apenergy.2018.07.021 A multi-resolution and multivariate analysis of the dynamic relationships between crude oil and petroleum-product prices 

  27. Int. J. Hydrogen Energy Zhang 46 5403 2021 10.1016/j.ijhydene.2020.11.045 Optimization of pressure swing adsorption for hydrogen purification based on Box-Behnken design method 

  28. Prog. Energy Combust. Sci. Zhu 75 100784 2019 10.1016/j.pecs.2019.100784 Recent advanced in elevated-temperature pressure swing adsorption for carbon capture and hydrogen production 

  29. Energy Procedia Canevesi 158 848 2019 10.1016/j.egypro.2019.01.220 Towards a design of a pressure swing adsorption unit for small scale biogas upgrading at 

  30. Curr. Opin. Chem. Eng. Pullumbi 24 131 2019 10.1016/j.coche.2019.04.008 Gas separation by adsorption: technological drivers and opportunities for improvement 

  31. Catal. Lett. Oh 147 2987 2017 10.1007/s10562-017-2188-0 Negative effects of dopants on copper-ceria catalysts for CO preferential oxidation under the presence of CO2 and H2O 

  32. Energy Build. Xie 50 266 2012 10.1016/j.enbuild.2012.03.047 Energy and exergy analysis of a fuel cell based micro combined heat and power cogeneration system 

  33. Catal. Today Kim 146 253 2009 10.1016/j.cattod.2009.01.045 Preferential CO oxidation over supported noble metal catalysts 

  34. J. Power Sources Lee 380 37 2018 10.1016/j.jpowsour.2018.01.059 Pressurized diesel fuel processing using hydrogen peroxide for the fuel cell power unit in low-oxygen environments 

  35. Energy Convers. Manag. Spanilla 120 257 2016 10.1016/j.enconman.2016.04.073 Techno-economic assessment of membrane assisted fluidized bed reactors for pure H2 production with CO2 capture 

  36. Int. J. Hydrogen Energy Bernardo 45 7313 2020 10.1016/j.ijhydene.2019.06.162 Recent advanced in membrane technologies for hydrogen purification 

  37. Int. J. Hydrogen Energy Lattner 29 393 2004 10.1016/j.ijhydene.2003.10.013 Comparison of conventional and membrane reactor fuel processors for hydrocarbon-based PEM fuel cell systems 

  38. J. Membr. Sci. Howard 241 207 2004 10.1016/j.memsci.2004.04.031 Hydrogen permeance of palladium-copper alloy membranes over a wide range of temperatures and pressures 

  39. Separ. Purif. Rev. Conde 46 152 2017 10.1080/15422119.2016.1212379 Pd-based membranes for hydrogen separation: review of alloying elements and their influence on membrane properties 

  40. Appl. Energy Chen 258 114078 2020 10.1016/j.apenergy.2019.114078 Water gas shift reaction for hydrogen production and carbon dioxide capture: a review 

  41. Int. J. Hydrogen Energy Miyamoto 36 7771 2011 10.1016/j.ijhydene.2011.01.089 Influence of the pre-reformer in steam reforming of dodecane using a Pd alloy membrane reactor 

  42. Int. J. Hydrogen Energy Shirasaki 34 4482 2009 10.1016/j.ijhydene.2008.08.056 Development of membrane reformer system for highly efficient hydrogen production from natural gas 

  43. Int. J. Hydrogen Energy Kim 43 7684 2018 10.1016/j.ijhydene.2017.11.176 Hydrogen production by steam methane reforming in a membrane reactor equipped with a Pd composite membrane deposited on a porous stainless steel 

  44. Petrol. Chem. Kirillov 58 103 2018 10.1134/S0965544118020020 Production of pure hydrogen from diesel fuel by steam pre-reforming and subsequent conversion in a membrane reactor 

  45. J. Membr. Sci. Jia 605 118083 2020 10.1016/j.memsci.2020.118083 High-temperature ethanol steam reforming in PdCu membrane reactor 

  46. Processes de Nooijer 7 106 2019 10.3390/pr7020106 Long-term stability of thin-film Pd-based supported membranes 

  47. Int. J. Hydrogen Energy Bi 34 2965 2009 10.1016/j.ijhydene.2009.01.046 Water-gas shift reaction in a Pd membrane reactor over Pt/Ce0.6Zr0.4O2 catalyst 

  48. J. Membr. Sci. Garcia-Garcia 405-406 30 2012 10.1016/j.memsci.2012.02.031 Hollow fibre membrane reactors for high H2 yields in the WGS reaction 

  49. Int. J. Hydrogen Energy Jia 44 24733 2019 10.1016/j.ijhydene.2019.07.199 Efficient H2 production via membrane-assisted ethanol steam reforming over Ir/CeO2 catalyst 

  50. Int. J. Hydrogen Energy Lee 40 3207 2015 10.1016/j.ijhydene.2014.12.113 Ni-Me/Ce0.9Gd0.1O2-x (Me: Rh, Pt and Ru) catalysts for diesel pre-reforming 

  51. Int. J. Hydrogen Energy Bae 41 19990 2016 10.1016/j.ijhydene.2016.08.135 Liquid fuel processing for hydrogen production: a review 

  52. S. Katikaneni, J. Bae, S. Lee, “Ni/CGO and Ni-Ru/CGO Based Pre-reforming Catalysts Formulation for Methane Rich Gas Production from Diesel Processing for Fuel Cell Applications,” US Patent, US20140350318A1. 

  53. ACS Catal. Zhu 6 722 2016 10.1021/acscatal.5b02594 Iron-based catalysts for the high-temperature water-gas shift (HT-WGS) reaction: a review 

  54. J. CO2 Util. Kwon 31 192 2019 10.1016/j.jcou.2019.03.004 Long-term durability of La0.75Sr0.25Cr0.5Mn0.5Oδ-3 as a fuel electrode of solid oxide electrolysis cells for co-electrolysis 

  55. Int. J. Hydrogen Energy Lee 39 4938 2014 10.1016/j.ijhydene.2014.01.106 La0.8Sr0.2Cr0.95Ru0.05O3-x and Sm0.8Ba0.2Cr0.95Ru0.05O3-x as partial oxidation catalysts for diesel 

  56. McLinden 

  57. Top. Catal. Darby 61 428 2018 10.1007/s11244-017-0882-1 Carbon monoxide poisoning resistance and structural stability of single atom alloys 

  58. J. Power Sources Boon 196 5928 2011 10.1016/j.jpowsour.2011.03.009 Steam reforming of commercial ultra-low sulphur diesel 

  59. Catal. Today Achouri 207 13 2013 10.1016/j.cattod.2012.09.017 Diesel steam reforming: comparison of two nickel aluminate catalysts prepared by wet-impregnation and co-precipitation 

  60. Appl. Catal. Gen. Bartholomew 212 17 2001 10.1016/S0926-860X(00)00843-7 Mechanisms of catalyst deactivation 

  61. Energies Park 12 1307 2019 10.3390/en12071307 Optimization of nickel-based catalyst composition and reaction conditions for the prevention of carbon deposition in toluene reforming 

  62. Carbon Stein 117 411 2017 10.1016/j.carbon.2017.03.001 Structure-mechanical property relations of non-graphitizing pyrolytic carbon synthesized at low temperatures 

  63. Catalysts Sousa Lobo 10 465 2020 10.3390/catal10050465 “Carbon formation at high temperatures (550-1400°C): kinetics, alternative mechanisms and growth modes 

  64. Catalysts Martins 9 1008 2019 10.3390/catal9121008 CO2 methanation over hydrotalcite-derived nickel/ruthenium and supported ruthenium catalysts 

  65. Dalton Trans. Yamauchi 40 4842 2011 10.1039/c0dt01632b Production of an ordered (B2) CuPd nanoalloy by low-temperature annealing under hydrogen atmosphere 

  66. Separ. Purif. Technol. Zhang 186 39 2017 10.1016/j.seppur.2017.05.039 Palladium-copper membranes for hydrogen separation 

  67. J. Membr. Sci. Jia 544 151 2017 10.1016/j.memsci.2017.09.012 High-temperature stability of Pd alloy membranes containing Cu and Au 

  68. RSC Adv. Wang 3 4821 2013 10.1039/c3ra23086d TS-1 zeolite as an effective diffusion barrier for highly stable Pd membrane supported on microporous α-Al2O3 tube 

  69. J. Membr. Sci. Res. Gallucci 3 142 2017 Advanced on high temperature Pd-based membranes and membrane reactors for hydrogen purification and production 

  70. Chem. Eng. J. Hla 146 148 2009 10.1016/j.cej.2008.09.023 Kinetics of high-temperature water-gas shift reaction over two iron-based commercial catalysts using simulated coal-derived syngases 

  71. Fuel Bravo 276 118045 2020 10.1016/j.fuel.2020.118045 Kinetics of CO methanation using a Fe-bearing catalyst from a blast furnace sludge 

  72. J. Membr. Sci. Boon 496 344 2015 10.1016/j.memsci.2015.08.061 Hydrogen permeation through palladium membranes and inhibition by carbon monoxide, carbon dioxide, and steam 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로