$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Transferable traffic signal control: Reinforcement learning with graph centric state representation

Transportation research. Part C, Emerging technologies, v.130, 2021년, pp.103321 -   

Yoon, Jinwon (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ,  Ahn, Kyuree (Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology) ,  Park, Jinkyoo (Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology) ,  Yeo, Hwasoo (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

Abstract Reinforcement learning (RL) has emerged as an alternative approach for optimizing the traffic signal control system. However, there is a restricted exploration problem encountered when a signal control model is trained with a predefined demand scenario in the traffic simulation. With the r...

Keyword

참고문헌 (34)

  1. Abdoos 1580 2011 2011 14th International IEEE conference on intelligent transportation systems (ITSC) Traffic light control in non-stationary environments based on multi agent Q-learning 

  2. J. Transp. Eng. Abdulhai 129 3 278 2003 10.1061/(ASCE)0733-947X(2003)129:3(278) Reinforcement Learning for True Adaptive Traffic Signal Control 

  3. IET Intel. Transport Syst. Arel 4 2 128 2010 10.1049/iet-its.2009.0070 Reinforcement Learning-Based Multi-Agent System for Network Traffic Signal Control 

  4. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W., 2016. Openai gym. arXiv preprint arXiv:1606.01540. 

  5. Casas, N., 2017. Deep deterministic policy gradient for urban traffic light control. arXiv preprint arXiv:1703.09035. 

  6. Transp. Res. Board Chang 2010 New signal control optimization policy for oversaturated arterial systems 

  7. IEEE Trans. Intell. Transp. Syst. Chu 2019 Multi-agent deep reinforcement learning for large-scale traffic signal control 

  8. Control Eng. Pract. Diakaki 10 2 183 2002 10.1016/S0967-0661(01)00121-6 A multivariable regulator approach to traffic-responsive network- wide signal control 

  9. IEEE Trans. Intell. Transp. Syst. El-Tantawy 14 3 1140 2013 10.1109/TITS.2013.2255286 Multi-Agent Reinforcement Learning for Integrated Network of Adaptive Traffic Signal Controllers (MARLIN-ATSC): methodology and large-scale application on downtown Toronto 

  10. J. Intell. Transp. Syst. Technol. Plann. Oper. El-Tantawy 18 3 227 2014 10.1080/15472450.2013.810991 Design of reinforcement learning parameters for seamless application of adaptive traffic signal control 

  11. IEEE Trans. Syst. Man Cybern. B Cybern. Ernst 39 2 517 2008 10.1109/TSMCB.2008.2007630 Reinforcement Learning versus model predictive control: a comparison on a power system problem 

  12. Gao, J., Shen, Y., Liu, J., Ito, M., & Shiratori, N., 2017. Adaptive traffic signal control: Deep reinforcement learning algorithm with experience replay and target network. arXiv preprint arXiv:1705.02755. 

  13. Transp. Res. Board Gartner 1983 OPAC: A demand-responsive strategy for traffic signal control 

  14. Genders, W., & Razavi, S., 2016. Using a deep reinforcement learning agent for traffic signal control. arXiv preprint arXiv:1611.01142. 

  15. Traff. Eng. Control Hunt 23 4 1982 The SCOOT on-line traffic signal optimisation technique 

  16. Control Transp. Sys. Henry 305 1984 10.1016/B978-0-08-029365-3.50048-1 The PRODYN real time traffic algorithm 

  17. J. Intell. Transp. Syst. Technol. Plann. Oper. Jeon 22 5 433 2018 10.1080/15472450.2017.1394192 Artificial intelligence for traffic signal control based solely on video images 

  18. Krajzewicz 269 2010 Fundamentals of Traffic Simulation Traffic simulation with SUMO-simulation of urban mobility 

  19. IEEE/CAA J. Autom. Sin. Li 3 3 247 2016 10.1109/JAS.2016.7508798 Traffic signal timing via deep reinforcement learning 

  20. IEEE Trans. Veh. Technol. Liang 68 2 1243 2019 10.1109/TVT.2018.2890726 A deep reinforcement learning network for traffic light cycle control 

  21. Lin, Y., Dai, X., Li, L., & Wang, F. Y., 2018. An efficient deep reinforcement learning model for urban traffic control. arXiv preprint arXiv:1808.01876. 

  22. Medina 596 2012 2012 15th International IEEE Conference on Intelligent Transportation Systems Traffic signal control using reinforcement learning and the max-plus algorithm as a coordinating strategy 

  23. Transp. Res. Board Miller 1963 A computer control system for traffic networks 

  24. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M., 2013. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602. 

  25. IEEE Trans. Intell. Transp. Syst. Prashanth 12 2 412 2011 10.1109/TITS.2010.2091408 Reinforcement Learning with Function Approximation for Traffic Signal Control 

  26. Transport. Sci. Sen 31 1 5 1997 10.1287/trsc.31.1.5 Controlled Optimization of Phases at an Intersection 

  27. IEEE Trans. Veh. Technol. Sims 29 2 130 1980 10.1109/T-VT.1980.23833 The sydney coordinated adaptive traffic (SCAT) system philosophy and benefits 

  28. Online Thorpe 1 1997 Vehicle Traffic Light Control Using Sarsa 

  29. Traffic Eng. Control Vincent 27 7-8 385 1986 Self-Optimizing Traffic Signal Control Using Microprocessors: The TRRL “MOVA” Strategy for Isolated Intersections 

  30. J. Adv. Transport. Wang 2018 10.1155/2018/3631489 Evaluation and application of urban traffic signal optimizing control strategy based on reinforcement learning 

  31. Watkins, C.J.C.H., 1989. Learning from delayed rewards. Ph. D. thesis, Cambridge Univ. 

  32. Webster, F. V., 1958. Traffic signal settings, Road Research Technical Paper. 

  33. Wiering 1151 2000 Machine Learning: Proceedings of the Seventeenth International Conference (ICML'2000) Multi-agent reinforcement learning for traffic light control 

  34. AI Open Zhou 1 57 2020 10.1016/j.aiopen.2021.01.001 Graph neural networks: a review of methods and applications 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로