$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Motions around conserved helical weak spots facilitate GPCR activation 원문보기

Proteins, v.89 no.11, 2021년, pp.1577 - 1586  

Bibbe, Janne M. (CMBI, Radboudumc, Nijmegen, Netherlands) ,  Vriend, Gert (CMBI, Radboudumc, Nijmegen, Netherlands)

Abstract AI-Helper 아이콘AI-Helper

AbstractG protein‐coupled receptors (GPCRs) participate in most physiological processes and are important drug targets in many therapeutic areas. Recently, many GPCR X‐ray structures became available, facilitating detailed studies of their sequence‐structure‐mobility‐fu...

주제어

참고문헌 (74)

  1. 1 Southan C , Sharman JL , Benson HE , et al. The IUPHAR/BPS guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands . Nucleic Acids Res . 2015 ; 44 ( D1 ): D1054 ‐ D1068 . 26464438 

  2. 2 Venter JC , Adams MD , Myers EW , et al. The sequence of the human genome . Science . 2001 ; 291 ( 5507 ): 1304 ‐ 1351 . 11181995 

  3. 3 Rask‐Andersen M , Masuram S , Schiöth HB . The druggable genome: evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication . Annu Rev Pharmacol Toxicol . 2014 ; 54 : 9 ‐ 26 . 24016212 

  4. 4 Palczewski K , Kumasaka T , Hori T , et al. Crystal structure of rhodopsin: a G protein‐coupled receptor . Science . 2000 ; 289 ( 5480 ): 739 ‐ 745 . 10926528 

  5. 5 van der Kant R , Vriend G . Alpha‐bulges in G protein‐coupled receptors . Int J Mol Sci . 2014 ; 15 ( 5 ): 7841 ‐ 7864 . 10.3390/ijms15057841 24806342 

  6. 6 Pándy‐Szekeres G , Munk C , Tsonkov TM , et al. GPCRdb in 2018: adding GPCR structure models and ligands . Nucleic Acids Res . 2018 ; 46 ( D1 ): D440 ‐ D446 . 10.1093/nar/gkx1109 29155946 

  7. 7 Isberg V , de Graaf C , Bortolato A , et al. Generic GPCR residue numbers–aligning topology maps while minding the gaps . Trends Pharmacol Sci . 2015 ; 36 ( 1 ): 22 ‐ 31 . 25541108 

  8. 8 Chien EYT , Liu W , Zhao Q , et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist . Science . 2010 ; 330 ( 6007 ): 1091 ‐ 1095 . 21097933 

  9. 9 Shalaeva DN , Cherepanov DA , Galperin MY , Vriend G , Mulkidjanian AY . G protein‐coupled receptors of class A harness the energy of membrane potential to increase their sensitivity and selectivity . Biochim Biophys Acta—Biomembr . 2019 ; 1861 ( 12 ): 183051 . 10.1016/j.bbamem.2019.183051 31449800 

  10. 10 Okada T , Sugihara M , Bondar A‐N , Elstner M , Entel P , Buss V . The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure . J Mol Biol . 2004 ; 342 ( 2 ): 571 ‐ 583 . 15327956 

  11. 11 Park JH , Morizumi T , Li Y , et al. Opsin, a structural model for olfactory receptors? Angew Chem Int Ed Engl . 2013 ; 52 ( 42 ): 11021 ‐ 11024 . 24038729 

  12. 12 Ring AM , Manglik A , Kruse AC , et al. Adrenaline‐activated structure of the β2‐adrenoceptor stabilized by an engineered nanobody . Nature . 2013 ; 502 ( 7472 ): 575 ‐ 579 . 10.1038/nature12572 24056936 

  13. 13 Carpenter B , Nehmé R , Warne T , Leslie AGW , Tate CG . Structure of the adenosine A2A receptor bound to an engineered G protein . Nature . 2016 ; 536 ( 7614 ): 104 ‐ 107 . 10.1038/nature18966 27462812 

  14. 14 Weichert D , Kruse AC , Manglik A , et al. Covalent agonists for studying G protein‐coupled receptor activation . Proc Natl Acad Sci U S A . 2014 ; 111 ( 29 ): 10744 ‐ 10748 . 10.1073/pnas.1410415111 25006259 

  15. 15 Rasmussen SGF , Choi H‐J , Fung JJ , et al. Structure of a nanobody‐stabilized active state of the β2 adrenoceptor . Nature . 2011 ; 469 ( 7329 ): 175 ‐ 180 . 21228869 

  16. 16 Berman HM , Westbrook J , Feng Z , et al. The Protein Data Bank . Nucleic Acids Res . 2000 ; 28 ( 1 ): 235 ‐ 242 . 10592235 

  17. 17 Rose PW , Prlić A , Altunkaya A , et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information . Nucleic Acids Res . 2016 ; 45 ( D1 ): D271 ‐ D281 . 27794042 

  18. 18 Crooks G , Hon G , Chandonia J , Brenner S . WebLogo: a sequence logo generator . Genome Res . 2004 ; 14 : 1188 ‐ 1190 . 10.1101/gr.849004.1 15173120 

  19. 19 Schneider TD , Stephens RM . Sequence logos: a new way to display consensus sequences . Nucleic Acids Res . 1990 ; 18 ( 20 ): 6097 ‐ 6100 . 2172928 

  20. 20 Krieger E , Vriend G . YASARA view—molecular graphics for all devices—from smartphones to workstations . Bioinformatics . 2014 ; 30 ( 20 ): 2981 ‐ 2982 . 24996895 

  21. 21 Schrödinger L. The PyMOL Molecular Graphics System, Version 1.8 ; 2015 . https://www.pymol.org/ . 

  22. 22 Vriend G . WHAT IF: a molecular modeling and drug design program . J Mol Graph Model . 1990 ; 8 : 52 ‐ 56 . 

  23. 23 Vriend G , Sander C . Detection of common three‐dimensional substructures in proteins . Proteins‐Struct Funct Genet . 1991 ; 11 ( 1 ): 52 ‐ 58 . 1660134 

  24. 24 Voorintholt R , Kosters MT , Vegter G , Vriend G , Hol WGJ . A very fast program for visualizing protein surfaces, channels and cavities . J Mol Graph . 1989 ; 7 ( 4 ): 243 ‐ 245 . 10.1016/0263-7855(89)80010-4 2486827 

  25. 25 Chinea G , Padron G , Hooft RWW , Sander C , Vriend G . The use of position‐specific rotamers in model building by homology . Proteins Struct Funct Bioinformatics . 1995 ; 23 ( 3 ): 415 ‐ 421 . 10.1002/prot.340230315 

  26. 26 Munk C , Mutt E , Isberg V , et al. An online resource for GPCR structure determination and analysis . Nat Methods . 2019 ; 16 ( 2 ): 151 ‐ 162 . 10.1038/s41592-018-0302-x 30664776 

  27. 27 Katritch V , Cherezov V , Stevens RC . Diversity and modularity of G protein‐coupled receptor structures . Trends Pharmacol Sci . 2012 ; 33 ( 1 ): 17 ‐ 27 . 22032986 

  28. 28 Sansom MSP , Weinstein H . Hinges, swivels and switches: the role of prolines in signalling via transmembrane α‐helices . Trends Pharmacol Sci . 2000 ; 21 ( 11 ): 445 ‐ 451 . 11121576 

  29. 29 Munk C , Isberg V , Mordalski S , et al. GPCRdb: the G protein‐coupled receptor database—an introduction . Br J Pharmacol . 2016 ; 173 ( 14 ): 2195 ‐ 2207 . 27155948 

  30. 30 Isberg V , Mordalski S , Munk C , et al. GPCRDB: an information system for G protein‐coupled receptors . Nucleic Acids Res . 2016 ; 44 ( D1 ): D356 ‐ D364 . 10.1093/nar/gkv1178 26582914 

  31. 31 Shapiro DA , Kristiansen K , Kroeze WK , Roth BL . Differential modes of agonist binding to 5‐hydroxytryptamine2A serotonin receptors revealed by mutation and molecular modeling of conserved residues in transmembrane region 5 . Mol Pharmacol . 2000 ; 58 ( 5 ): 877 ‐ 886 . 11040033 

  32. 32 Ho BY , Karschin A , Branchek T , Davidson N , Lester HA . The role of conserved aspartate and serine residues in ligand binding and in function of the 5‐HT1A receptor: a site‐directed mutation study . FEBS Lett . 1992 ; 312 ( 2–3 ): 259 ‐ 262 . 1426261 

  33. 33 Wess J , Nanavati S , Vogel Z , Maggio R . Functional role of proline and tryptophan residues highly conserved among G protein‐coupled receptors studied by mutational analysis of the m3 muscarinic receptor . EMBO J . 1993 ; 12 ( 1 ): 331 ‐ 338 . 7679072 

  34. 34 Shi L , Liapakis G , Xu R , Guarnieri F , Ballesteros JA , Javitch JA . β2 adrenergic receptor activation . J Biol Chem . 2002 ; 277 ( 43 ): 40989 ‐ 40996 . 12167654 

  35. 35 Nawaratne V , Leach K , Felder CC , Sexton PM , Christopoulos A . Structural determinants of allosteric Agonism and modulation at the M4 muscarinic acetylcholine receptor . J Biol Chem . 2010 ; 285 ( 25 ): 19012 ‐ 19021 . 20406819 

  36. 36 Savarese TM , Wang C‐D , Fraser CM . Site‐directed mutagenesis of the rat m1 muscarinic acetylcholine receptor. Role of conserved cysteines in receptor function . J Biol Chem . 1992 ; 267 ( 16 ): 11439 ‐ 11448 . 1317867 

  37. 37 Cavalli A , Fanelli F , Taddei C , De Benedetti PG , Cotecchia S . Amino acids of the α1B‐adrenergic receptor involved in agonist binding: differences in docking catecholamines to receptor subtypes . FEBS Lett . 1996 ; 399 ( 1–2 ): 9 ‐ 13 . 8980109 

  38. 38 Lu Z‐L , Saldanha JW , Hulme EC . Transmembrane domains 4 and 7 of the M1Muscarinic acetylcholine receptor are critical for ligand binding and the receptor activation switch . J Biol Chem . 2001 ; 276 ( 36 ): 34098 ‐ 34104 . 11441014 

  39. 39 Roth CB , Hanson MA , Stevens RC . Stabilization of the human β 2‐adrenergic receptor TM4–TM3–TM5 helix Interface by mutagenesis of Glu122 3.41, a critical residue in GPCR structure . J Mol Biol . 2008 ; 376 ( 5 ): 1305 ‐ 1319 . 18222471 

  40. 40 Doré AS , Robertson N , Errey JC , et al. Structure of the adenosine a 2A receptor in complex with ZM241385 and the xanthines XAC and caffeine . Structure . 2011 ; 19 ( 9 ): 1283 ‐ 1293 . 21885291 

  41. 41 Lebon G , Warne T , Edwards PC , et al. Agonist‐bound adenosine A2A receptor structures reveal common features of GPCR activation . Nature . 2011 ; 474 ( 7352 ): 521 ‐ 526 . 10.1038/nature10136 21593763 

  42. 42 Warne T , Serrano‐Vega MJ , Baker JG , et al. Structure of a β1‐adrenergic G protein‐coupled receptor . Nature . 2008 ; 454 ( 7203 ): 486 ‐ 491 . 18594507 

  43. 43 Serrano‐Vega MJ , Magnani F , Shibata Y , Tate CG . Conformational thermostabilization of the β1‐adrenergic receptor in a detergent‐resistant form . Proc Natl Acad Sci U S A . 2008 ; 105 ( 3 ): 877 ‐ 882 . 18192400 

  44. 44 Tan Q , Zhu Y , Li J , et al. Structure of the CCR5 chemokine receptor–HIV entry inhibitor maraviroc complex . Science . 2013 ; 341 ( 6152 ): 1387 ‐ 1390 . 24030490 

  45. 45 Srivastava A , Yano J , Hirozane Y , et al. High‐resolution structure of the human GPR40 receptor bound to allosteric agonist TAK‐875 . Nature . 2014 ; 513 ( 7516 ): 124 ‐ 127 . 10.1038/nature13494 25043059 

  46. 46 Egloff P , Hillenbrand M , Klenk C , et al. Structure of signaling‐competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli . Proc Natl Acad Sci U S A . 2014 ; 111 ( 6 ): E655 ‐ E662 . 24453215 

  47. 47 White JF , Noinaj N , Shibata Y , et al. Structure of the agonist‐bound neurotensin receptor . Nature . 2012 ; 490 ( 7421 ): 508 ‐ 513 . 10.1038/nature11558.Structure 23051748 

  48. 48 Krumm BE , White JF , Shah P , Grisshammer R . Structural prerequisites for G‐protein activation by the neurotensin receptor . Nat Commun . 2015 ; 6 : 7895 . 26205105 

  49. 49 Krumm BE , Lee S , Bhattacharya S , et al. Structure and dynamics of a constitutively active neurotensin receptor . Sci Rep . 2016 ; 6 ( 1 ): 38564 . 10.1038/srep38564 27924846 

  50. 50 Thorsen TS , Matt R , Weis WI , Kobilka BK . Modified T4 lysozyme fusion proteins facilitate G protein‐coupled receptor crystallogenesis . Structure . 2014 ; 22 ( 11 ): 1657 ‐ 1664 . 25450769 

  51. 51 Vickery ON , Carvalheda CA , Zaidi SA , Pisliakov AV , Katritch V , Zachariae U . Intracellular transfer of Na+ in an active‐state G‐protein‐coupled receptor . Structure . 2018 ; 26 ( 1 ): 171 ‐ 180.e2 . 10.1016/j.str.2017.11.013 29249607 

  52. 52 Haga K , Kruse AC , Asada H , et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist . Nature . 2012 ; 482 ( 7386 ): 547 ‐ 551 . 22278061 

  53. 53 Joosten RP , Salzemann J , Bloch V , et al. PDB‐REDO: automated re‐refinement of X‐ray structure models in the PDB . J Appl Cryst . 2009 ; 42 ( 3 ): 376 ‐ 384 . 10.1107/S0021889809008784 22477769 

  54. 54 Kruse AC , Ring AM , Manglik A , et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor . Nature . 2013 ; 504 ( 7478 ): 101 ‐ 106 . 10.1038/nature12735 24256733 

  55. 55 Fenalti G , Giguere PM , Katritch V , et al. Molecular control of δ‐opioid receptor signaling . Nature . 2014 ; 506 ( 7487 ): 191 ‐ 196 . 10.1038/nature12944 24413399 

  56. 56 Koehl A , Hu H , Maeda S , et al. Structure of the μ‐opioid receptor‐Gi protein complex . Nature . 2018 ; 558 ( 7711 ): 547 ‐ 552 . 10.1038/s41586-018-0219-7 29899455 

  57. 57 Miller‐Gallacher JL , Nehmé R , Warne T , et al. The 2.1 Å resolution structure of cyanopindolol‐bound β1‐adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand‐free receptor . PLoS One . 2014 ; 9 ( 3 ): e92727 . 10.1371/journal.pone.0092727 24663151 

  58. 58 Venkatakrishnan AJ , Ma AK , Fonseca R , et al. Diverse GPCRs exhibit conserved water networks for stabilization and activation . Proc Natl Acad Sci U S A . 2019 ; 116 ( 8 ): 3288 ‐ 3293 . 10.1073/pnas.1809251116 30728297 

  59. 59 Wang C , Jiang Y , Ma J , et al. Structural basis for molecular recognition at serotonin receptors . Science . 2013 ; 340 ( 6132 ): 610 ‐ 614 . 23519210 

  60. 60 Wacker D , Wang C , Katritch V , et al. Structural features for functional selectivity at serotonin receptors . Science . 2013 ; 340 ( 6132 ): 615 ‐ 619 . 23519215 

  61. 61 Warne T , Edwards PC , Leslie AGW , Tate CG . Crystal structures of a stabilized β 1‐adrenoceptor bound to the biased agonists bucindolol and carvedilol . Structure . 2012 ; 20 ( 5 ): 841 ‐ 849 . 22579251 

  62. 62 Shimamura T , Shiroishi M , Weyand S , et al. Structure of the human histamine H1 receptor complex with doxepin . Nature . 2011 ; 475 ( 7354 ): 65 ‐ 70 . 21697825 

  63. 63 Thal DM , Sun B , Feng D , et al. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors . Nature . 2016 ; 531 ( 7594 ): 335 ‐ 340 . 26958838 

  64. 64 Miller RL , Thompson AA , Trapella C , et al. The importance of ligand‐receptor conformational pairs in stabilization: spotlight on the N/OFQ G protein‐coupled receptor . Structure . 2015 ; 23 ( 12 ): 2291 ‐ 2299 . 26526853 

  65. 65 Wu H , Wacker D , Katritch V , et al. Structure of the human kappa opioid receptor in complex with JDTic . Nature . 2012 ; 485 ( 7398 ): 327 ‐ 332 . 22437504 

  66. 66 Chrencik JE , Roth CB , Terakado M , et al. Crystal structure of antagonist bound human lysophosphatidic acid receptor 1 . Cell . 2015 ; 161 ( 7 ): 1633 ‐ 1643 . 26091040 

  67. 67 Hanson MA , Roth CB , Jo E , et al. Crystal structure of a lipid G protein–coupled receptor . Science . 2012 ; 335 ( 6070 ): 851 ‐ 855 . 22344443 

  68. 68 Zuckerkandl E , Pauling L . Molecules as documents of evolutionary history . J Theor Biol . 1965 ; 8 ( 2 ): 357 ‐ 366 . 5876245 

  69. 69 Kuipers W , Oliveira L , Vriend G , Ijzerman AP . Identification of class‐determining residues in G protein‐coupled receptors by sequence analysis . Recept Channels . 1997 ; 5 ( 3–4 ): 159 ‐ 174 . 9606720 

  70. 70 Horn F , Bywater R , Krause G , et al. The interaction of class B G protein‐coupled receptors with their hormones . Recept Channels . 1998 ; 5 ( 5 ): 305 ‐ 314 . 9666522 

  71. 71 Oliveira L , Paiva ACM , Vriend G . A low resolution model for the interaction of G proteins with G protein‐coupled receptors . Protein Eng des Sel . 1999 ; 12 ( 12 ): 1087 ‐ 1095 . 10.1093/protein/12.12.1087 

  72. 72 Kuipers W , Oliveira L , Paiva ACM , et al. Sequence‐function correlation in G protein‐coupled receptors . In: Findlay JBC , ed. Membrane Protein Models . Oxford : BIOS Scientific Publishers ; 1996 . 

  73. 73 Venkatakrishnan AJ , Deupi X , Lebon G , Tate CG , Schertler GF , Babu MM . Molecular signatures of G‐protein‐coupled receptors . Nature . 2013 ; 494 ( 7436 ): 185 ‐ 194 . 10.1038/nature11896 23407534 

  74. 74 Venkatakrishnan AJ , Deupi X , Lebon G , et al. Diverse activation pathways in class A GPCRs converge near the G‐protein‐coupling region . Nature . 2016 ; 536 ( 7617 ): 484 ‐ 487 . 10.1038/nature19107 27525504 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로