$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] UAV Based Indoor Localization and Objection Detection 원문보기

Frontiers in neurorobotics, v.16, 2022년, pp.914353 -   

Zhou, Yimin (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China) ,  Yu, Zhixiong (University of Chinese Academy of Sciences , Beijing , China) ,  Ma, Zhuang (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China)

Abstract AI-Helper 아이콘AI-Helper

This article targets fast indoor positioning and 3D target detection for unmanned aerial vehicle (UAV) real-time task implementation. With the combined direct method and feature method, a method is proposed for fast and accurate position estimation of the UAV. The camera pose is estimated by the vis...

주제어

참고문헌 (38)

  1. Ammann N. Mayo L. G. ( 2018 ). Undelayed initialization of inverse depth parameterized landmarks in UKF-SLAM with error state formulation , in IEEE/ASME International Conference on Advanced Intelligent Mechatronics ( Auckland : IEEE ), 918 – 923 . 

  2. ASL ( 2012 ). ASL Datasets-The EuRoC MAV Dataset[EB/OL] . Projects.asl.ethz.ch. Available online at: https://projects.asl.ethz.ch/datasets/ 

  3. Balabanova I. Kostadinova S. Markova V. Georgiev G. ( 2020 ). Synthesis of prediction models for levels of noises in electrical signals , in International Conference on Biomedical Innovations and Applications ( Varna : IEEE ), 149 – 152 . 

  4. Bavle H. De La Puente P. How J. P. ( 2020 ). VPS-SLAM: visual planar semantic SLAM for aerial robotic systems . IEEE Access 8 , 60704 – 60718 . 10.1109/ACCESS.2020.2983121 

  5. Beeharry Y. Bassoo V. ( 2020 ). Performance of ANN and AlexNet for weed detection using UAV-based images , in International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering ( Balaclava ), 163 – 167 . 

  6. Bokovoy A. Yakovlev K. ( 2018 ). Sparse 3D point-cloud map upsampling and noise removal as a vSLAM post-processing step: experimental evaluation , in International Conference on Interactive Collaborative Robotics , ( Leipzig ), 23 – 33 . 

  7. Bradski G. Kaehler A. ( 2008 ). Learning OpenCV: Computer Vision With the OpenCV library . Los Angeles, CA : O'Reilly Media, Inc . 

  8. Campos C. Elvira R. Rodriguez J. ( 2021 ). ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM . IEEE Trans. Rob . 37 , 1874 – 1890 . 10.1109/TRO.2021.3075644 

  9. Cavaliere D. Loia V. Saggese A. ( 2017 ). Semantically enhanced UAVs to increase the aerial scene understanding . IEEE Trans. Syst. Man Cybern. Syst . 49 , 555 – 567 . 10.1109/TSMC.2017.2757462 

  10. Chebrolu N. Läbe T. Stachniss C. ( 2018 ). Robust long-term registration of UAV images of crop fields for precision agriculture . IEEE Rob. Autom. Lett . 3 , 3097 – 3104 . 10.1109/LRA.2018.2849603 

  11. Chen J. Lin G. Yelamandala C. ( 2020 ). High-accuracy mapping design based on multi-view images and 3D LiDAR point clouds , in IEEE International Conference on Consumer Electronics (ICCE) ( Las Vegas, NV : IEEE ), 1 – 2 . 

  12. Chen X. Kundu K. Zhu Y. ( 2017 ). 3D object proposals using stereo imagery for accurate object class detection . IEEE Trans. Pattern Anal. Mach. Intell . 40 , 1259 – 1272 . 10.1109/TPAMI.2017.2706685 28541196 

  13. Cui L. Ma C. ( 2019 ). SOF-SLAM: A semantic visual SLAM for dynamic environments . IEEE Access 7 , 166528 – 166539 . 10.1109/ACCESS.2019.2952161 

  14. Forster C. Pizzoli M. Scaramuzza D. ( 2014 ). SVO: fast semi-direct monocular visual odometry , in IEEE International Conference on Robotics and Automation (ICRA) ( Hong Kong : IEEE ), 15 – 22 . 

  15. Forster C. Zhang Z. Gassner M. ( 2016 ). SVO: semidirect visual odometry for monocular and multicamera systems . IEEE Trans. Rob . 33 , 249 – 265 . 10.1109/TRO.2016.2623335 

  16. Girshick R. ( 2015 ). Fast R-CNN , in Proceedings of the IEEE International Conference on Computer Vision ( Santiago : IEEE ), 1440 – 1448 . 

  17. Girshick R. Donahue J. Darrell T. Malik J. ( 2014 ). Rich feature hierarchies for accurate object detection and semantic segmentation , in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) ( Columbus, OH : IEEE ), 580 – 587 . 

  18. Jiang Y. Kang M. Fan M. A. ( 2018 ). Novel relative camera motion estimation algorithm with applications to visual odometry , in 2018 IEEE International Symposium on Multimedia (ISM) ( Taichung : IEEE ), 215 – 216 . 

  19. Kasyanov A. Engelmann F. Stückler J. Leibe B. ( 2017 ). Keyframe-based visual-inertial online SLAM with relocalization , in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) ( Vancouver, BC : IEEE ), 6662 – 6669 . 

  20. Kuznetsova A. Maleva T. Soloviev V. ( 2020 ). Detecting apples in orchards using YOLOv3 and YOLOv5 in general and close-up images , in International Symposium on Neural Networks ( Cairo : Springer ), 233 – 243 . 

  21. Lee H. Lee K. Kuc T. ( 2019 ). A new semantic descriptor for data association in semantic SLAM , in The 19th International Conference on Control, Automation and Systems ( Jeju ), 1178 – 1181 . 

  22. Li L. Liu Z. Özgner Ü. ( 2018 ). Dense 3D Semantic SLAM of traffic environment based on stereo vision , in IEEE Intelligent Vehicles Symposium (IV) ( Changshu : IEEE ), 965 – 970 . 10.1109/IVS.2018.8500714 

  23. Liu H. Ma H. Zhang L. ( 2019 ). Visual odometry based on semantic supervision , in IEEE International Conference on Image Processing (ICIP) ( Taipei : IEEE ), 2566 – 2570 . 

  24. Liu W. Anguelov D. Erhan D. Szegedy C. Reed S. Fu C. Y. . ( 2016 ). Single shot multibox detector , in European Conference on Computer Vision ( Amsterdam ), 21 – 37 . 

  25. Liu Y. Petillot Y. Lane D. ( 2019 ). Global localization with object-level semantics and topology , in IEEE international Conference on Robotics and Automation ( Montreal, QC : IEEE ), 4909 – 4915 . 

  26. Mur-Artal R. Montiel J. Tardos J. ( 2015 ). ORB-SLAM: a versatile and accurate monocular SLAM system . IEEE Trans. Rob . 31 , 1147 – 1163 . 10.1109/TRO.2015.2463671 

  27. Nicholson L. Milford M. Snderhauf N. ( 2018 ). Quadricslam: dual quadrics from object detections as landmarks in object-oriented slam . IEEE Rob. Autom. Lett . 4 , 1 – 8 . 10.1109/LRA.2018.2866205 

  28. PASCAL ( 2012 ). The PASCAL Visual Object Classes Challenge 2012[EB/OL] . Host.robots.ox.ac.uk[2019-12-21]. Available online at: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ 

  29. Peng W. Pan H. Liu H. ( 2020 ). IDA-3D: instance-depth-aware 3D object detection from stereo vision for autonomous driving , in IEEE Conference on Computer Vision and Pattern Recognition ( New York, NY : IEEE ), 13015 – 13024 . 

  30. Redmon J. Divvala S. Girshick R. Farhadi A. ( 2016 ). You only look once: Unified, real-time object detection , in IEEE Conference on Computer Vision and Pattern Recognition ( Las Vegas, NV : IEEE ), 779 – 788 . 

  31. Ren S. He K. Girshick R. ( 2016 ). Faster R-CNN: towards real-time object detection with region proposal networks . IEEE Trans. Pattern. Anal. Mach. Intell . 39 , 1137 – 1149 . 10.1109/TPAMI.2016.2577031 27295650 

  32. Su Y. Cai Y. ( 2018 ). Image feature extraction for vision-based uav navigation , in Chinese Automation Congress ( Xian ), 1130 – 1134 . 

  33. TUM ( 2020 ). TUM Computer Vision Group - Datasets[EB/OL] . Vision.in.tum.de[2020-1-28]. Available online at: https://vision.in.tum.de/data/datasets 

  34. Vincent J. Labbé M. Lauzon J. S. ( 2020 ). Dynamic object tracking and masking for visual SLAM , in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) ( Las Vegas, NV : IEEE ), 4974 – 4979 . 

  35. Wang H. Wang C. Xie L. ( 2021 ). Intensity-SLAM: intensity assisted localization and mapping for large scale environment . IEEE Rob. Autom. Lett . 6 , 1715 – 1721 . 10.1109/LRA.2021.3059567 

  36. Wang R. Schworer M. Cremers D. ( 2017 ). Stereo DSO: large-scale direct sparse visual odometry with stereo cameras , in IEEE International Conference on Computer Vision (ICCV) ( Venice : IEEE ), 3903 – 3911 . 

  37. Younes G. Asmar D. Zelek J. ( 2019 ). A unified formulation for visual odometry , in IEEE/RSJ International Conference on Intelligent Robots and Systems ( Macau : IEEE ), 6237 – 6244 . 

  38. Zhang M. Li Z. Song Y. ( 2020 ). Optimization and comparative analysis of YOLOV3 target detection method based on lightweight network structure , in IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) ( Dalian : IEEE ), 20 – 24 . 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로