$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Heterologous expression of an α-amylase inhibitor from common bean ( Phaseolus vulgaris ) in Kluyveromyces lactis and Saccharomyces cerevisiae 원문보기

Microbial cell factories, v.16, 2017년, pp.110 -   

Brain-Isasi, Stephanie (Drug Analysis Laboratory, Facultad de Ciencias Quí) ,  Álvarez-Lueje, Alejandro (micas y Farmacé) ,  Higgins, Thomas Joseph V. (uticas, Universidad de Chile, Santiago, Chile)

Abstract AI-Helper 아이콘AI-Helper

BackgroundPhaseolamin or α-amylase inhibitor 1 (αAI) is a glycoprotein from common beans (Phaseolus vulgaris L.) that inhibits some insect and mammalian α-amylases. Several clinical studies support the beneficial use of bean αAI for control of diabetes and obesity. Commercial...

주제어

참고문헌 (54)

  1. 1. Ishimoto M Suzuki K Iwanaga M Kikuchi F Kitamura K Variation of seed α-amylase inhibitors in the common bean Theor Appl Genet 1995 90 425 429 10.1007/BF00221985 24173933 

  2. 2. Marshall JJ Lauda CM Purification and properties of phaseolamin, an inhibitor of α-amylase, from the kidney bean, Phaseolus vulgaris J Biol Chem 1975 250 8030 8037 240849 

  3. 3. Powers JR Whitaker JR Purification and some physical and chemical properties of red kidney bean ( Phaseolus vulgaris ) α-amylase inhibitor J Food Biochem 1978 1 217 238 10.1111/j.1745-4514.1978.tb00183.x 

  4. 4. Moreno J Altabella T Chrispeels MJ Characterization of α-amylase-inhibitor, a lectin-like protein in the seeds of Phaseolus vulgaris Plant Physiol 1990 92 703 709 10.1104/pp.92.3.703 16667338 

  5. 5. Kluh I Horn M Hýblová J Hubert J Dolečková-Marešová L Voburka Z Inhibitory specificity and insecticidal selectivity of α-amylase inhibitor from Phaseolus vulgaris Phytochemistry 2005 66 31 39 10.1016/j.phytochem.2004.11.001 15649508 

  6. 6. Yamaguchi H Isolation and characterization of the subunits of Phaseolus vulgaris α-amylase inhibitor J Biochem (Tokyo) 1991 110 785 789 10.1093/oxfordjournals.jbchem.a123660 1783611 

  7. 7. Santino A Daminati MG Vitale A Bollini R The α-amylase inhibitor of bean seed: two-step proteolytic maturation in the protein storage vacuoles of the developing cotyledon Physiol Plant 1992 85 425 432 10.1111/j.1399-3054.1992.tb05807.x 

  8. 8. Pueyo JJ Hunt DC Chrispeels MJ Activation of bean ( Phaseolus vulgaris ) α-amylase inhibitor requires proteolytic processing of the proprotein Plant Physiol 1993 101 1341 1348 10.1104/pp.101.4.1341 8310064 

  9. 9. Campbell PM Reiner D Moore AE Lee R-Y Epstein MM Higgins TJV Comparison of the α-amylase inhibitor-1 from common bean ( Phaseolus vulgaris ) varieties and transgenic expression in other legumes—post-translational modifications and immunogenicity J Agric Food Chem 2011 59 6047 6054 10.1021/jf200456j 21542649 

  10. 10. Le Berre-Anton V Bompard-Gilles C Payan F Rougé P Characterization and functional properties of the α-amylase inhibitor (α-AI) from kidney bean ( Phaseolus vulgaris ) seeds Biochim Biophys Acta BBA-Protein Struct Mol Enzymol 1997 1343 31 40 10.1016/S0167-4838(97)00100-3 

  11. 11. Powers JR Whitaker JR Effect of several experimental parameters on combination of red kidney bean ( Phaseolus vulgaris ) α-amylase inhibitor with porcine pancreatic α-amylase J Food Biochem 1978 1 239 260 10.1111/j.1745-4514.1978.tb00184.x 

  12. 12. Hollenbeck CB Coulston AM Quan R Becker TR Vreman HJ Stevenson DK Effects of a commercial starch blocker preparation on carbohydrate digestion and absorption: in vivo and in vitro studies Am J Clin Nutr 1983 38 498 503 6414283 

  13. 13. Liener IE Donatucci DA Tarcza JC Starch blockers: a potential source of trypsin inhibitors and lectins Am J Clin Nutr 1984 39 196 200 6198897 

  14. 14. Bo-Linn GW Ana CAS Morawski SG Fordtran JS Starch blockers—their effect on calorie absorption from a high-starch meal N Engl J Med 1982 307 1413 1416 10.1056/NEJM198212023072301 6182469 

  15. 15. Carlson G Li B Bass P Olsen W A bean α-amylase inhibitor formulation (starch blocker) is ineffective in man Science 1983 219 393 395 10.1126/science.6184780 6184780 

  16. 16. Layer P Carlson GL DiMagno EP Partially purified white bean amylase inhibitor reduces starch digestion in vitro and inactivates intraduodenal amylase in humans Gastroenterology 1985 88 1895 1902 10.1016/0016-5085(85)90016-2 2581844 

  17. 17. Layer P Rizza RA Zinsmeister AR Carlson GL DiMagno EP Effect of a purified amylase inhibitor on carbohydrate tolerance in normal subjects and patients with diabetes mellitus Mayo Clin Proc 1986 61 442 447 10.1016/S0025-6196(12)61978-8 2423813 

  18. 18. Layer P Zinsmeister AR DiMagno EP Effects of decreasing intraluminal amylase activity on starch digestion and postprandial gastrointestinal function in humans Gastroenterology 1986 91 41 48 10.1016/0016-5085(86)90436-1 2423408 

  19. 19. Brugge WR Rosenfeld MS Impairment of starch absorption by a potent amylase inhibitor Am J Gastroenterol 1987 82 718 722 2440298 

  20. 20. Boivin M Flourie B Rizza RA Go VL DiMagno EP Gastrointestinal and metabolic effects of amylase inhibition in diabetics Gastroenterology 1988 94 387 394 10.1016/0016-5085(88)90426-X 2446948 

  21. 21. Obiro WC Zhang T Jiang B The nutraceutical role of the Phaseolus vulgaris α-amylase inhibitor Br J Nutr 2008 100 1 12 10.1017/S0007114508879135 18331662 

  22. 22. Ulbricht C Bryan JK Conquer J Costa D Stock T Tanguay-Colucci S An evidence-based systematic review of amylase inhibitors by the Natural Standard Research Collaboration J Diet Suppl 2010 7 78 95 10.3109/19390210903535043 22435576 

  23. 23. Onakpoya I Aldaas S Terry R Ernst E The efficacy of Phaseolus vulgaris as a weight-loss supplement: a systematic review and meta-analysis of randomised clinical trials Br J Nutr 2011 106 196 202 10.1017/S0007114511001516 22844674 

  24. 24. Boniglia C Carratù B Di Stefano S Giammarioli S Mosca M Sanzini E Lectins, trypsin and α-amylase inhibitors in dietary supplements containing Phaseolus vulgaris Eur Food Res Technol 2008 227 689 693 10.1007/s00217-007-0773-y 

  25. 25. de Gouveia NM Alves FV Furtado FB Scherer DL Mundim AV Espindola FS An in vitro and in vivo study of the α-amylase activity of phaseolamin J Med Food 2014 17 915 920 10.1089/jmf.2013.0044 24650210 

  26. 26. Bollini R Carnovale E Campion B Removal of antinutritional factors from beans ( Phaseolus vulgaris L.) seeds Biotechnol Agron Soc Environ 1999 3 217 219 

  27. 27. Maczó A Cucu T De Meulenaer B Gelencsér É Comparison of the α-amylase inhibitor-1 from common beans and transgenic pea expressing the bean α-amylase inhibitor-1 by means of LC–TOF–MS Food Res Int 2015 76 86 91 10.1016/j.foodres.2014.12.025 

  28. 28. Jain NK Boivin M Zinsmeister AR Brown ML Malagelada JR DiMagno EP Effect of ileal perfusion of carbohydrates and amylase inhibitor on gastrointestinal hormones and emptying Gastroenterology 1989 96 377 387 10.1016/0016-5085(89)91561-8 2463204 

  29. 29. Kotaru M Iwami K Yeh H-Y Ibuki F In vivo action of α-amylase inhibitor from cranberry bean ( Phaseolus vulgaris ) in rat small intestine J Nutr Sci Vitaminol (Tokyo) 1989 35 579 588 10.3177/jnsv.35.579 2699495 

  30. 30. Ganatra MB Vainauskas S Hong JM Taylor TE Denson J-PM Esposito D A set of aspartyl protease-deficient strains for improved expression of heterologous proteins in Kluyveromyces lactis : Kluyveromyces lactis aspartyl protease mutants FEMS Yeast Res 2011 11 168 178 10.1111/j.1567-1364.2010.00703.x 21166768 

  31. 31. Sikorski RS Hieter P A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae Genetics 1989 122 19 2659436 

  32. 32. Gamborg OL Miller RA Ojima K Nutrient requirements of suspension cultures of soybean root cells Exp Cell Res 1968 50 151 158 10.1016/0014-4827(68)90403-5 5650857 

  33. 33. Read JD Colussi PA Ganatra MB Taron CH Acetamide selection of Kluyveromyces lactis cells transformed with an integrative vector leads to high-frequency formation of multicopy strains Appl Environ Microbiol 2007 73 5088 5096 10.1128/AEM.02253-06 17586678 

  34. 34. Sambrook J, Fritsch E, Maniatis T. Molecular cloning: a laboratory manual, vol. 2, 2nd ed. S.l. Cold Spring Harbor; 1989. 

  35. 35. Gietz RD Schiestl RH High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method Nat Protoc 2007 2 31 34 10.1038/nprot.2007.13 17401334 

  36. 36. Rosa JCC Colombo LT Alvim MCT Avonce N Van Dijck P Passos FML Metabolic engineering of Kluyveromyces lactis for l -ascorbic acid (vitamin C) biosynthesis Microb Cell Factories 2013 12 59 10.1186/1475-2859-12-59 

  37. 37. Whelan JA Russell NB Whelan MA A method for the absolute quantification of cDNA using real-time PCR J Immunol Methods 2003 278 261 269 10.1016/S0022-1759(03)00223-0 12957413 

  38. 38. Abràmoff MD Magalhães PJ Ram SJ Image processing with ImageJ Biophotonics Int 2004 11 36 42 

  39. 39. Aldridge GM Podrebarac DM Greenough WT Weiler IJ The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting J Neurosci Methods 2008 172 250 254 10.1016/j.jneumeth.2008.05.003 18571732 

  40. 40. Bradford MM A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal Biochem 1976 72 248 254 10.1016/0003-2697(76)90527-3 942051 

  41. 41. Sarmah BK Moore A Tate W Molvig L Morton RL Rees DP Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor Mol Breed 2004 14 73 82 10.1023/B:MOLB.0000037996.01494.12 

  42. 42. Atack JM Srikhanta YN Fox KL Jurcisek JA Brockman KL Clark TA A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae Nat Commun 2015 6 7828 10.1038/ncomms8828 26215614 

  43. 43. Tague BW Chrispeels MJ The plant vacuolar protein, phytohemagglutinin, is transported to the vacuole of transgenic yeast J Cell Biol 1987 105 1971 1979 10.1083/jcb.105.5.1971 3316244 

  44. 44. Raemaekers RJ de Muro L Gatehouse JA Fordham-Skelton AP Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris correct N-terminal processing and secretion of heterologous proteins expressed using the PHA-E signal peptide Eur J Biochem FEBS 1999 265 394 403 10.1046/j.1432-1327.1999.00749.x 

  45. 45. Tague BW Dickinson CD Chrispeels MJ A short domain of the plant vacuolar protein phytohemagglutinin targets invertase to the yeast vacuole Plant Cell 1990 2 533 546 10.1105/tpc.2.6.533 2152175 

  46. 46. Hiraiwa N Nishimura M Hara-Nishimura I Expression and activation of the vacuolar processing enzyme in Saccharomyces cerevisiae Plant J Cell Mol Biol 1997 12 819 829 10.1046/j.1365-313X.1997.12040819.x 

  47. 47. Müntz K Shutov AD Legumains and their functions in plants Trends Plant Sci 2002 7 340 344 10.1016/S1360-1385(02)02298-7 12167328 

  48. 48. Fraering P Imhof I Meyer U Strub JM van Dorsselaer A Vionnet C The GPI transamidase complex of Saccharomyces cerevisiae contains Gaa1p, Gpi8p, and Gpi16p Mol Biol Cell 2001 12 3295 3306 10.1091/mbc.12.10.3295 11598210 

  49. 49. Oliveira C Teixeira JA Domingues L Recombinant lectins: an array of tailor-made glycan-interaction biosynthetic tools Crit Rev Biotechnol 2012 33 66 80 10.3109/07388551.2012.670614 22530774 

  50. 50. Lin J Fido R Shewry P Archer DB Alcocer MJC The expression and processing of two recombinant 2S albumins from soybean ( Glycine max ) in the yeast Pichia pastoris Biochim Biophys Acta BBA-Proteins Proteom 2004 1698 203 212 10.1016/j.bbapap.2003.12.001 

  51. 51. Swennen D Paul M-F Vernis L Beckerich J-M Fournier A Gaillardin C Secretion of active anti-Ras single-chain Fv antibody by the yeasts Yarrowia lipolytica and Kluyveromyces lactis Microbiol Read Engl 2002 148 41 50 10.1099/00221287-148-1-41 

  52. 52. Yang M Johnson SC Murthy PPN Enhancement of alkaline phytase production in Pichia pastoris : influence of gene dosage, sequence optimization and expression temperature Protein Expr Purif 2012 84 247 254 10.1016/j.pep.2012.06.001 22705766 

  53. 53. Colussi PA Taron CH Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis Appl Environ Microbiol 2005 71 7092 7098 10.1128/AEM.71.11.7092-7098.2005 16269745 

  54. 54. Idiris A Tohda H Kumagai H Takegawa K Engineering of protein secretion in yeast: strategies and impact on protein production Appl Microbiol Biotechnol 2010 86 403 417 10.1007/s00253-010-2447-0 20140428 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로