$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Alternative splicing in tomato pollen in response to heat stress 원문보기

DNA research : an international journal for rapid publication of reports on genes and genomes, v.24 no.2, 2017년, pp.205 - 217  

Keller, Mario (Department of Biosciences, Molecular Cell Biology of Plants) ,  Hu, Yangjie (Department of Biosciences, Molecular Cell Biology of Plants) ,  Mesihovic, Anida (Department of Biosciences, Molecular Cell Biology of Plants) ,  Fragkostefanakis, Sotirios (Department of Biosciences, Molecular Cell Biology of Plants) ,  Schleiff, Enrico (Department of Biosciences, Molecular Cell Biology of Plants) ,  Simm, Stefan (Department of Biosciences, Molecular Cell Biology of Plants)

Abstract AI-Helper 아이콘AI-Helper

AbstractAlternative splicing (AS) is a key control mechanism influencing signal response cascades in different developmental stages and under stress conditions. In this study, we examined heat stress (HS)-induced AS in the heat sensitive pollen tissue of two tomato cultivars. To obtain the entire sp...

주제어

참고문헌 (78)

  1. 1 Finka A. , Mattoo R. U. , Goloubinoff P. 2011 , Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells . Cell Stress Chaperones , 16 , 15 – 31 . 20694844 

  2. 2 Fragkostefanakis S. , Simm S. , Paul P. , Bublak D. , Scharf K. D. , Schleiff E. 2015 , Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis . Plant Cell Environ ., 38 , 693 – 709 . 25124075 

  3. 3 Jung K.H. , Ko H.J. , Nguyen M.X. , Kim S.R. , Ronald P. , An G. 2012 , Genome-wide identification and analysis of early heat stress responsive genes in rice . J. Plant Biol ., 55 , 10 . 

  4. 4 Larkindale J. , Hall J.D. , Knight M.R. , Vierling E. 2005 , Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance . Plant Physiol ., 138 , 882 – 897 . 15923322 

  5. 5 Li Y.F. , Wang Y. , Tang Y. , Kakani V.G. , Mahalingam R. 2013 , Transcriptome analysis of heat stress response in switchgrass (Panicum virgatum L.) . BMC Plant Biol ., 13 , 153 . 24093800 

  6. 6 Sarkar N.K. , Kim Y.K. , Grover A. 2014 , Coexpression network analysis associated with call of rice seedlings for encountering heat stress . Plant Mol. Biol ., 84 , 125 – 143 . 23975147 

  7. 7 Zhou Y. , Chen H. , Chu P. , 2012 , NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis . Plant Cell Rep ., 31 , 379 – 89 . 22009054 

  8. 8 Sung D. Y. , Guy C. L. 2003 , Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences . Plant Physiol ., 132 , 979 – 87 . 12805626 

  9. 9 Montero-Barrientos M. , Hermosa R. , Cardoza R.E. , Gutierrez S. , Nicolas C. , Monte E. 2010 , Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses . J. Plant Physiol ., 167 , 659 – 65 . 20080316 

  10. 10 Cazale A. C. , Clement M. , Chiarenza S. , 2009 , Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana . J. Exp. Bot ., 60 , 2653 – 64 . 19443614 

  11. 11 Scharf K. D. , Berberich T. , Ebersberger I. , Nover L. 2012 , The plant heat stress transcription factor (Hsf) family: structure, function and evolution . Biochim. Biophys. Acta , 1819 , 104 – 19 . 22033015 

  12. 12 Guerra D. , Crosatti C. , Khoshro H.H. , Mastrangelo A.M. , Mica E. , Mazzucotelli E. 2015 , Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider’s web of mechanisms . Front. Plant Science , 6 , 57. 

  13. 13 Kornblihtt A.R. , Schor I.E. , Allo M. , Dujardin G. , Petrillo E. , Munoz M.J. 2013 , Alternative splicing: a pivotal step between eukaryotic transcription and translation . Nat. Rev. Mol. Cell Biol ., 14 , 153 – 65 . 23385723 

  14. 14 Moore M. J. , Proudfoot N. J. 2009 , Pre-mRNA processing reaches back to transcription and ahead to translation . Cell , 136 , 688 – 700 . 19239889 

  15. 15 Staiger D. , Brown J. W. 2013 , Alternative splicing at the intersection of biological timing, development, and stress responses . Plant Cell , 25 , 3640 – 56 . 24179132 

  16. 16 Reddy A.S. 2007 , Alternative splicing of pre-messenger RNAs in plants in the genomic era . Annu. Rev. Plant Biol ., 58 , 267 – 94 . 17222076 

  17. 17 Wang Z. , Burge C.B. 2008 , Splicing regulation: from a parts list of regulatory elements to an integrated splicing code . RNA , 14 , 802 – 13 . 18369186 

  18. 18 Chang C. Y. , Lin W. D. , Tu S. L. 2014 , Genome-wide analysis of heat-sensitive alternative splicing in Physcomitrella patens . Plant Physiol ., 165 , 826 – 40 . 24777346 

  19. 19 Sun Y. , Xiao H. 2015 , Identification of alternative splicing events by RNA sequencing in early growth tomato fruits . BMC Genomics , 16 , 948 . 26573826 

  20. 20 Liu R. , Loraine A.E. , Dickerson J.A. 2014 , Comparisons of computational methods for differential alternative splicing detection using RNA-seq in plant systems . BMC Bioinform ., 15 . 

  21. 21 Syed N.H. , Kalyna M. , Marquez Y. , Barta A. , Brown J.W. 2012 , Alternative splicing in plants–coming of age . Trends Plant Sci ., 17 , 616 – 23 . 22743067 

  22. 22 Kalyna M. , Simpson C.G. , Syed N.H. , 2012 , Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis . Nucleic Acids Res ., 40 , 2454 – 69 . 22127866 

  23. 23 Mastrangelo A.M. , Marone D. , Laido G. , De Leonardis A.M. , De Vita P. 2012 , Alternative splicing: enhancing ability to cope with stress via transcriptome plasticity . Plant Sci ., 185-186 , 40 – 49 . 22325865 

  24. 24 Reddy A.S. , Marquez Y. , Kalyna M. , Barta A. 2013 , Complexity of the alternative splicing landscape in plants . Plant Cell , 25 , 3657 – 83 . 24179125 

  25. 25 Filichkin S.A. , Priest H.D. , Givan S.A. , 2010 , Genome-wide mapping of alternative splicing in Arabidopsis thaliana . Genome Res ., 20 , 45 – 58 . 19858364 

  26. 26 Ner-Gaon H. , Halachmi R. , Savaldi-Goldstein S. , Rubin E. , Ophir R. , Fluhr R. 2004 , Intron retention is a major phenomenon in alternative splicing in Arabidopsis . Plant J ., 39 , 877 – 85 . 15341630 

  27. 27 Min X.J. , Powell B. , Braessler J. , Meinken J. , Yu F. , Sablok G. 2015 , Genome-wide cataloging and analysis of alternatively spliced genes in cereal crops . BMC Genomics , 16 , 721 . 26391769 

  28. 28 Loraine A.E. , McCormick S. , Estrada A. , Patel K. , Qin P. 2013 , RNA-seq of arabidopsis pollen uncovers novel transcription and alternative splicing . Plant Physiol ., 162 , 1092 – 109 . 23590974 

  29. 29 Dai S. , Li L. , Chen T. , Chong K. , Xue Y. , Wang T. 2006 , Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth . Proteomics , 6 , 2504 – 29 . 16548068 

  30. 30 Bokszczanin K.L. Solanaceae Pollen Thermotolerance Initial Training Network, C Fragkostefanakis S. 2013 , Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance . Front. Plant Sci ., 4 , 315 . 23986766 

  31. 31 Giorno F. , Wolters-Arts M. , Mariani C. , Rieu I. 2013 , Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development . Plants , 2 , 17 . 

  32. 32 Pressman E. , Peet M.M. , Pharr D.M. 2002 , The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers . Ann. Bot ., 90 , 631 – 6 . 12466104 

  33. 33 Rutley N. , Twell D. 2015 , A decade of pollen transcriptomics . Plant Reprod ., 28 , 73 – 89 . 25761645 

  34. 34 Fragkostefanakis S. , Mesihovic A. , Simm S. , 2016 , HsfA2 controls the activity of developmentally and stress-regulated heat stress protection mechanisms in tomato male reproductive tissues . Plant Physiol ., 170 , 2461–77. 

  35. 35 Paul P. , Chaturvedi P. , Selymesi M. , 2016 , The membrane proteome of male gametophyte in Solanum lycopersicum . J. Proteomics , 131 , 48 – 60 . 26455813 

  36. 36 Bombarely A. , Menda N. , Tecle I.Y. , 2011 , The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl . Nucleic Acids Res ., 39 , D1149 – 55 . 20935049 

  37. 37 Kim D. , Pertea G. , Trapnell C. , Pimentel H. , Kelley R. , Salzberg S.L. 2013 , TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions . Genome Biol ., 14 , R36 . 23618408 

  38. 38 Tomato Genome C. 2012 , The tomato genome sequence provides insights into fleshy fruit evolution . Nature , 485 , 635 – 41 . 22660326 

  39. 39 Anders S. , Pyl P.T. , Huber W. 2015 , HTSeq–a Python framework to work with high-throughput sequencing data . Bioinformatics , 31 , 166 – 9 . 25260700 

  40. 40 Livak K.J. , Schmittgen T.D. 2001 , Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method . Methods , 25 , 402 – 8 . 11846609 

  41. 41 Ashburner M. , Ball C.A. , Blake J.A. , 2000 , Gene ontology: tool for the unification of biology. The Gene Ontology Consortium . Nat. Genet ., 25 , 25 – 9 . 10802651 

  42. 42 Jones P. , Binns D. , Chang H.Y. , 2014 , InterProScan 5: genome-scale protein function classification . Bioinformatics , 30 , 1236 – 40 . 24451626 

  43. 43 Shannon P. , Markiel A. , Ozier O. , 2003 , Cytoscape: a software environment for integrated models of biomolecular interaction networks . Genome Res ., 13 , 2498 – 504 . 14597658 

  44. 44 Maere S. , Heymans K. , Kuiper M. 2005 , BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks . Bioinformatics , 21 , 3448 – 9 . 15972284 

  45. 45 Benjamini Y. , Hochberg Y. 1995 , Controlling the false discovery rate - a practical and powerful approach to multiple testing . J. R. Stat. Soc. B. Methods , 57 , 289 – 300 . 

  46. 46 Trapnell C. , Roberts A. , Goff L. , 2012 , Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks . Nat. Protoc ., 7 , 562 – 78 . 22383036 

  47. 47 Finn R.D. , Bateman A. , Clements J. , 2014 , Pfam: the protein families database . Nucleic Acids Res ., 42 , D222 – 30 . 24288371 

  48. 48 Johnson L.S. , Eddy S.R. , Portugaly E. 2010 , Hidden Markov model speed heuristic and iterative HMM search procedure . BMC Bioinformatics , 11 , 431 . 20718988 

  49. 49 Edgar R. , Domrachev M. , Lash A.E. 2002 , Gene Expression Omnibus: NCBI gene expression and hybridization array data repository . Nucleic Acids Res ., 30 , 207 – 10 . 11752295 

  50. 50 Higashi Y. , Okazaki Y. , Myouga F. , Shinozaki K. , Saito K. 2015 , Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana . Sci. Rep ., 5 , 10533 . 26013835 

  51. 51 Thatcher S.R. , Zhou W. , Leonard A. , 2014 , Genome-wide analysis of alternative splicing in Zea mays: landscape and genetic regulation . Plant Cell , 26 , 3472 – 87 . 25248552 

  52. 52 Chen H. , Chen X. , Chen D. , Li J. , Zhang Y. , Wang A. 2015 , A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites . BMC Plant Biol ., 15 , 132 . 26048292 

  53. 53 Braunschweig U. , Barbosa-Morais N.L. , Pan Q. , 2014 , Widespread intron retention in mammals functionally tunes transcriptomes . Genome Res ., 24 , 1774 – 86 . 25258385 

  54. 54 Bond U. 2006 , Stressed out! Effects of environmental stress on mRNA metabolism . FEMS Yeast Res ., 6 , 160 – 70 . 16487339 

  55. 55 Utans U. , Behrens S.E. , Luhrmann R. , Kole R. , Kramer A. 1992 , A splicing factor that is inactivated during invivo heat-shock is functionally equivalent to the [U4/U6.U5] Triple Snrnp-Specific Proteins . Genes Dev ., 6 , 631 – 41 . 1532785 

  56. 56 Cheng Q. , Zhou Y. , Liu Z. , 2015 , An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice . Plant Biol ., 17 , 419 – 29 . 25255693 

  57. 57 Liu J. , Sun N. , Liu M. , 2013 , An autoregulatory loop controlling Arabidopsis HsfA2 expression: role of heat shock-induced alternative splicing . Plant Physiol ., 162 , 512 – 521 . 23503691 

  58. 58 Sugio A. , Dreos R. , Aparicio F. , Maule A.J. 2009 , The Cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis . Plant Cell , 21 , 642 – 54 . 19244141 

  59. 59 Tsukahara F. , Yoshioka T. , Muraki T. 2000 , Molecular and functional characterization of HSC54, a novel variant of human heat-shock cognate protein 70 . Mol. Pharmacol ., 58 , 1257 – 263 . 11093761 

  60. 60 Yamada M. , Yamada M. , Kiuchi Y. , 1999 , Identification of a novel splice variant of heat shock cognate protein 70 after chronic antidepressant treatment in rat frontal cortex . Biochem. Biophys. Res. Commun ., 261 , 541 – 5 . 10425221 

  61. 61 Takechi H. , Hosokawa N. , Hirayoshi K. , Nagata K. 1994 , Alternative 5’ splice site selection induced by heat shock . Mol. Cell. Biol ., 14 , 567 – 75 . 8264624 

  62. 62 Dvinge H. , Bradley R.K. 2015 , Widespread intron retention diversifies most cancer transcriptomes . Genome Med ., 7 , 45 . 26113877 

  63. 63 Pickrell J.K. , Pai A.A. , Gilad Y. , Pritchard J.K. 2010 , Noisy splicing drives mRNA isoform diversity in human cells . PLoS Genet ., 6 , e1001236 . 21151575 

  64. 64 Warnecke T. , Hurst L.D. 2011 , Error prevention and mitigation as forces in the evolution of genes and genomes . Nat. Rev. Genet ., 12 , 875 – 81 . 22094950 

  65. 65 Šamaj J. , Thelen J.J. 2007 , Plant Proteomics . Springer : Berlin; New York . 

  66. 66 Volkov R.A. , Panchuk II , Schoffl F. 2003 , Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR . J. Exp. Bot ., 54 , 2343 – 9 . 14504302 

  67. 67 Staudt A.C. , Wenkel S. 2011 , Regulation of protein function by ‘microProteins’ . EMBO Rep ., 12 , 35 – 42 . 21151039 

  68. 68 Seo P.J. , Hong S.Y. , Kim S.G. , Park C.M. 2011 , Competitive inhibition of transcription factors by small interfering peptides . Trends Plant Sci ., 16 , 541 – 9 . 21723179 

  69. 69 Prakash A. , Bateman A. 2015 , Domain atrophy creates rare cases of functional partial protein domains . Genome Biol ., 16 , 88 . 25924720 

  70. 70 Swindell W.R. , Huebner M. , Weber A.P. 2007 , Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways . BMC Genomics , 8 , 125 . 17519032 

  71. 71 Bita C.E. , Zenoni S. , Vriezen W.H. , Mariani C. , Pezzotti M. , Gerats T. 2011 , Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants . BMC Genomics , 12 , 384 . 21801454 

  72. 72 Sarikas A. , Hartmann T. , Pan Z.Q. 2011 , The cullin protein family . Genome Biol ., 12 , 220 . 21554755 

  73. 73 Pan Z.Q. , Kentsis A. , Dias D.C. , Yamoah K. , Wu K. 2004 , Nedd8 on cullin: building an expressway to protein destruction . Oncogene , 23 , 1985 – 97 . 15021886 

  74. 74 Guo L. , Nezames C.D. , Sheng L. , Deng X. , Wei N. 2013 , Cullin-RING ubiquitin ligase family in plant abiotic stress pathways(F) . J. Integr. Plant Biol ., 55 , 21 – 30 . 23206256 

  75. 75 Voigt J. , Papalopulu N. 2006 , A dominant-negative form of the E3 ubiquitin ligase Cullin-1 disrupts the correct allocation of cell fate in the neural crest lineage . Development , 133 , 559 – 68 . 16396913 

  76. 76 Dai M. , Terzaghi W. , Wang H. 2013 , Multifaceted roles of Arabidopsis PP6 phosphatase in regulating cellular signaling and plant development . Plant Signal. Behav ., 8 , e22508 . 23104112 

  77. 77 Park J.H. , Kim W.Y. , Chae H.B. , Kim M.G. , Lee S.Y. 2012 , Serine/threonine protein phosphatase 5 (PP5) interacts with substrate under heat stress conditions and forms protein complex in Arabidopsis . Plant Signal. Behav ., 7 , 535 – 8 . 22516824 

  78. 78 Guergnon J. , Derewenda U. , Edelson J.R. , Brautigan D.L. 2009 , Mapping of protein phosphatase-6 association with its SAPS domain regulatory subunit using a model of helical repeats . BMC Biochem ., 10 , 24 . 19835610 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로