$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model 원문보기

Sensors, v.18 no.9, 2018년, pp.2799 -   

Mambou, Sebastien Jean (Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic) ,  Maresova, Petra (jean.mambou@uhk.cz (S.J.M.)) ,  Krejcar, Ondrej (petra.maresova@uhk.cz (P.M.)) ,  Selamat, Ali (aselamat@utm.my (A.S.)) ,  Kuca, Kamil (kamil.kuca@uhk.cz (K.K.))

Abstract AI-Helper 아이콘AI-Helper

Women’s breasts are susceptible to developing cancer; this is supported by a recent study from 2016 showing that 2.8 million women worldwide had already been diagnosed with breast cancer that year. The medical care of a patient with breast cancer is costly and, given the cost and value of the preser...

Keyword

참고문헌 (40)

  1. 1. National Breast Cancer Foundation Breast Cancer Facts National Breast Cancer Foundation Sydney, Australia 2016 

  2. 2. Dongola N. Mammography in Breast Cancer Available online: https://emedicine.medscape.com/article/346529-overview (accessed on 24 August 2018) 

  3. 3. Hamidinekoo A. Denton E. Rampun A. Honnor K. Zwiggelaar R. Deep learning in mammography and breast histology, an overview and future trends Med. Image Anal. 2018 47 45 67 10.1016/j.media.2018.03.006 29679847 

  4. 4. Kosus N. Kosus A. Duran M. Simavlı S. Turhan N. Comparison of standard mammography with Digital mammography and Digital infrared thermal imaging for breast cancer screening J. Turk. Ger. Gynecol. Assoc. 2010 11 152 157 10.5152/jtgga.2010.24 24591923 

  5. 5. Li H. Weng J. Shi Y. Gu W. Mao Y. Wang Y. Liu W. Zhang J. An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images Sci. Rep. 2018 8 10.1038/s41598-01825005-7 

  6. 6. Dezs R. Anna H. Zsuzsa U. Peter P. Istvan C. Detecting and classifying lesions in mammograms with Deep Learning Sci. Rep. 2018 8 4165 10.1038/s41598-018-22437-z 29545529 

  7. 7. Visual Lab A Methodology for Breast Disease Computer-Aided Diagnosis using dynamic thermography Available online: http://visual.ic.uff.br/en/proeng/thiagoelias/ (accessed on 24 August 2018) 

  8. 8. Alireza O. Bita S. Machine Learning Techniques to Diagnose BreastCancer Proceedings of the 2010 5th International Symposium on Health Informatics and Bioinformatics Antalya, Turkey 20–22 April 2010 10.1109/HIBIT.2010.5478895 

  9. 9. Saira C. Muhammad K. Khurram K. Breast Cancer Detection in Mammograms using Convolutional Neural Network Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) Sukkur, Pakistan 3–4 March 2018 1 5 

  10. 10. Adriel A. Aura C. Roger R. Anselmo M. Claudineia A. Computer Aided Diagnosis for Breast Diseases Based on Infrared Images Proceedings of the 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA) Hammamet, Tunisia 30 October–3 November 2017 172 177 

  11. 11. Vijaya M. Christy B. Thermal imaging based breast cancer analysis using BEMD and uniform RLBP Proceedings of the 2017 Third International Conference on Biosignals, Images and Instrumentation (ICBSII) Chennai, India 16–18 March 2017 1 6 

  12. 12. Dina A. Sheida N. Reda A. Clifford Y. Survey on deep convolutional neural networks in mammography Proceedings of the 2017 IEEE 7th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS) Orlando, FL, USA 19–21 October 2017 

  13. 13. Litjens G. Kooi T. Bejnordi B.E. Setio A.A.A. Ciompi F. Ghafoorian M. van der Laak J.A.W.M. van Ginneken B. Sánchez C.I. A Survey on Deep Learning in Medical Image Analysis Med. Image Anal. 2017 42 60 88 10.1016/j.media.2017.07.005 28778026 

  14. 14. Rampun A. Scotney B.W. Morrow P.J. Wang H. Breast Density Classification Using Local Quinary Patterns with Various Neighbourhood Topologies J. Imaging 2018 4 14 10.3390/jimaging4010014 

  15. 15. Li S. Johnson J. Peck A. Xie Q. Near infrared fluorescent imaging of brain tumor with IR780 dye incorporated phospholipid nanoparticles J. Transl. Med. 2017 15 10.1186/s12967-016-1115-2 28114956 

  16. 16. Amria A. Pulko S.H. Wilk A.J. Potentialities of steady-state and transient thermography in breast tumour depth detection: A numerical study Comput. Methods Progr. Biomed. 2016 123 68 80 10.1016/j.cmpb.2015.09.014 26522612 

  17. 17. Boogerd L.S. Handgraaf H.J. Lam H.D. Huurman V.A. FarinaSarasqueta A. Frangioni J.V. van de Velde C.J. Braat A.E. Vahrmeijer A.L. Laparoscopic detection and resection of occult liver tumors of multiple cancer types using real-time near-infrared fluorescence guidance Surg. Endosc. 2017 31 952 961 10.1007/s00464-016-5007-6 27357928 

  18. 18. Kandlikar S.G. Perez-Raya I. Raghupathi P.A. Gonzalez-Hernandez J.L. Dabydeen D. Medeiros L. Phatak P. Infrared imaging technology for breast cancer detection—Current status, protocols and new directions Int. J. Heat Mass Transf. 2017 108 2303 2320 10.1016/j.ijheatmasstransfer.2017.01.086 

  19. 19. Namikawa T. Sato T. Hanazaki K. Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green Surg. Today 2015 45 1467 1474 10.1007/s00595-015-1158-7 25820596 

  20. 20. Kontos M. Wilson R. Fentiman I. Digital infrared thermal imaging (DITI) of breast lesions: Sensitivity and specificity of detection of primary breast cancers Clin. Radiol. 2011 66 536 539 10.1016/j.crad.2011.01.009 21377664 

  21. 21. Mambou S. Maresova P. Krejcar O. Selamat A. Kuca K. Breast Cancer Detection Using Modern Visual IT Techniques Modern Approaches for Intelligent Information and Database Systems Andrzej S. Adrianna K. Manuel N. Quang Thuy H. Springer Berlin, Germany 2018 Volume 769 397 407 

  22. 22. Kandlikar S.G. Perez-Raya I. Raghupathi P.A. Gonzalez-Hernandez J.L. Dabydeen D. Medeiros L. Phatak P. Infrared imaging technology for breast cancer detection—Current status, protocols and new directions Int. J. Heat Mass Transf. 2017 108 2303 2320 10.1016/j.ijheatmasstransfer.2017.01.086 

  23. 23. Czech Society for Oncology National Oncology Program Available online: https://www.linkos.cz/narodni-onkologicky-program/ (accessed on 24 August 2018) 

  24. 24. Unar-Mungu´ıa M. Meza R. Colchero M.A. Torres-Mejía G. de Cosío T.G. Economic and disease burden of breast cancer associated with suboptimal breastfeeding practices in Mexico Cancer Causes Control 2017 28 1381 1391 10.1007/s10552-017-0965-0 28983711 

  25. 25. Boquete L. Ortega S. Miguel-Jimenez J.M. Rodrıguez-Ascariz J.M. Blanco R. Automated Detection of Breast Cancer in Thermal Infrared Images, Based on Independent Component Analysis J. Med. Syst. 2012 36 103 111 10.1007/s10916-010-9450-y 20703744 

  26. 26. Kubicek J. Bryjova I. Faltynova K. Penhaker M. Augustynek M. Maresova P. Evaluation of Gama Analysis Results Significance within Verification of Radiation IMRT Plans in Radiotherapy Proceedings of the Conference on Computational Collective Intelligence Technologies and Applications Nicosia, Cyprus 27 September 2017 541 548 10.1007/978-3-319-67077-5-52 

  27. 27. Augustynek M. Korpas D. Penhaker M. Cvek J. Binarova A. Monitoring of CRT-D devices during radiation therapy in vitro Biomed. Eng. Online 2016 15 10.1186/s12938-016-0144-7 26960554 

  28. 28. Yszczarz B.L. Nojszewska E. Productivity losses and public finance burden attributable to breast cancer in Poland, 2010–2014 BMC Cancer 2017 17 10.1186/s12885-017-3669-7 

  29. 29. Nitori N. Deguchi T. Kubota K. Yoshida M. Kato A. Kojima M. Kadomura T. Okada A. Okamura J. Kobayashi M. Successful treatment of non-occlusive mesenteric ischemia (NOMI) using the HyperEye Medical System for intraoperative visualization of the mesenteric and bowel circulation: Report of a case Surg Today. 2014 44 359 362 10.1007/s00595-013-0503-y 23404392 

  30. 30. Cardoso F. Harbeck N. Barrios C.H. Bergh J. Cortés J. El Saghir N. Francis P.A. Hudis C.A. Ohno S. Partridge A.H. Research needs in breast cancer Ann. Oncol. 2016 28 208 217 10.1093/annonc/mdw571 27831505 

  31. 31. Šmídová I. Alcohol and Breast Cancer-Economic Costs Hygiena 2012 51 17 21 

  32. 32. Gustavsen G. Schroeder B. Kennedy P. Pothier K.C. Erlander M.G. Schnabel C.A. Ali H. Health economic analysis of Breast Cancer Index in patients with ER+, LN-breast cancer Am. J. Manag. Care 2014 20 e302-10 25295793 

  33. 33. IMS Institute for Healthcare Informatics Global Oncology Trend Report: A Review of 2015 and Outlook to 2020 Available online: https://morningconsult.com/wp-content/uploads/2016/06/IMS-Institute-Global-Oncology-Report-05.31.16.pdf (accessed on 24 August 2018) 

  34. 34. Kim Y.A. Oh I.H. Yoon S.J. Kim H.J. Seo H.Y. Kim E.J. Lee Y.H. Jung J.H. The Economic Burden of Breast Cancer in Korea from 2007–2010 Cancer Res. Treat. 2015 47 583 590 10.4143/crt.2014.143 25687860 

  35. 35. Angel C. Hannah G. Ajay B. Michael F. Shridar G. Natalie N.C. John L. Anant M. Accurate and reproducible invasive breast cancer detection in wholeslide images: A Deep Learning approach for quantifying tumor extent Sci. Rep. 2017 7 10.1038/srep46450 

  36. 36. Guo Y. Liu S. Li Z. Shang X. BCDForest: A boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data BMC Bioinform. 2018 19 118 10.1186/s12859-018-2095-4 29671390 

  37. 37. Szegedy C. Liu W. Jia Y. Sermanet P. Reed S. Anguelov D. Erhan D. Vanhoucke V. Rabinovich A. Going deeper with convolutions Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Boston, MA, USA 7–12 June 2015 1 9 

  38. 38. Bryjova I. Kubicek J. Molnarova K. Peter L. Penhaker M. Kuca K. Multiregional Segmentation Modeling in Medical Ultrasonography: Extraction, Modeling and Quantification of Skin Layers and Hypertrophic Scars Proceedings of the International Conference on Computational Collective Intelligence Nicosia, Cyprus 27 September 2017 182 670775 10.1007/978-3-319-67077518 

  39. 39. Scikit-Learn A. Sklearn.Svm.LinearSVC Available online: http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html (accessed on 24 August 2018) 

  40. 40. Wikipedia Kernel method Mathematics: the kernel trick Available online: https://en.wikipedia.org/wiki/Kernel_method_Mathematics:_the_kernel_trick (accessed on 24 August 2018) 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로