최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국농림기상학회지 = Korean Journal of Agricultural and Forest Meteorology, v.9 no.3, 2007년, pp.161 - 169
김선영 (이화여자대학교 환경공학과) , 강호정 (연세대학교 토목환경공학부)
Global climate changes including elevated
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
Alm, J., L. Schulman, J. Walden, H. Nykanen, P. J. Martikainen, and J. Silvola, 1999: Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80, 161-174
Baldwin, D. S., and A. M. Mitchell, 2000: The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-flood plain systems: a synthesis. Regulated Rivers Research and Management 16(5), 457-467
Bayley, S. E., R. S. Behr, and C. A. Elly, 1986: Retention and release of S from A freshwater wetland. Water, Air, and Soil Pollution 31(1-2), 101-114
Biasi, C., O. Rusalimova, H. Meyer, C. Kaiser, W. Wanek, P. Barsukov, H. Junger, and A. Richter, 2005: Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. Rapid Communications in Mass Spectrometry 19, 1401-1408
Boon, P. I., A. Mitchell, and K. Lee, 1997: Effects of wetting and drying on methane emissions from ephemeral floodplain wetlands in south-eastern Australia. Hydrobiologia 357, 73-87
Briones, M. J. I., J. Poskitt, and N. Ostle, 2004: Influence of warming and enchytraeid activities on soil $CO_2$ and $CH_4$ fluxes. Soil Biology and Biochemistry 36, 1851-1859
Carnol, M., and P. Ineson, 1999: Environmental factors controlling $NO^{3?}$ leaching, $N_2O$ emissions and numbers of $NH^{4+}$ oxidisers in a coniferous forest soil. Soil Biology and Biochemistry 31(7), 979-990
Chin, K. J., T. Lukow, and R. Conrad, 1999: Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Applied and Environmental Microbiology 65(6), 2341-2349
Chung, H., D. R. Zak, and E. A. Lilleskov, 2006: Fungal community composition and metabolism under elevated $CO_2$ and $O_3$ . Oecologia 147(1), 143-154
Cicerone, R. J., and R. S. Oremland, 1988: Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles 2, 299-327
Cole, L., R. D. Bardgett, D. P. Ineson, and P. J. Hobbs, 2002: Enchytraeid worm (Oligochaeta) influences on microbial community structure, nutrient dynamics and plant growth in blanket peat subjected to warming. Soil Biology and Biochemistry 34(1), 83-92
Corstanje, R., 2003: Experimental and multivariate analysis of biogeo-indicators of change in wetland ecosystems. Ph.D. dissertation. University of Florida, Gainesville
Davidsson, T. E., M. Trepel, and J. Schrautzer, 2002: Denitrification in drained and rewetted minerotrophic peat soils in Northern Germany (Pohnsdorfer Stauung). Journal of Plant Nutrition and Soil Science 165(2), 199-204
Deiglmayr, K., L. Philippot, U. A. Hartwig, and E. Kandeler, 2004: Structure and activity of the nitrate-reducing community in the rhizosphere of Lolium perenne and Trifolium repens under long-term elevated atmospheric $pCO_2$ . FEMS Microbiology Ecology 49, 445-454
Deslippe, J. R., K. N. Egger, and G. H. R. Henry, 2005: Impacts of warming and fertilization on nitrogen-fixing microbial communities in the Canadian High Arctic. FEMS Microbiology Ecology 53(1), 41-50
Dowrick, D. J., C. Freeman, M. A. Lock, and B. Reynolds, 2006: Sulphate reduction and the suppression of peatland methane emissions following summer drought. Geoderma 132, 384-390
Eliasson, P. E., R. E. McMurtrie, D. A. Pepper, M. Stromgren, S. Linder, and G. I. Agren, 2005: The response of heterotrophic $CO_2$ flux to soil warming. Global Change Biology 11(1), 167-181
Fenner, N., C. Freeman, and B. Reynolds, 2005: Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies. Soil Biology and Biochemistry 37(10), 1814-1821
Fenner, N., D. J. Dowrick, M. A. Lock, C. R. Rafarel, and C. Freeman, 2006: A novel approach to studying the effects of temperature on soil biogeochemistry using a thermal gradient bar. Soil Use and Management 22, 267-273
Fey, A., and R. Conrad, 2000: Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Applied and Environmental Microbiology 66(11), 4790-4797
Fierer, N., B. P. Colman, J. P. Schimel, and R. B. Jackson, 2006: Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis. Global Biogeochemical Cycles 20, GB3026
Fierer, N., J. P. Schimel, and P. A. Holden, 2003: Influence of drying-rewetting frequency on soil bacterial community structure. Microbial Ecology 45, 63-71
Freeman, C, J. Hudson, M. A. Lock, B. Reynolds, and C. Swanson, 1994: A possible role for sulphate in the suppression of methane fluxes following drought. Soil Biology and Biochemistry 26, 1439-1442
Freeman, C, N. Fenner, N. J. Ostle, H. Kang, D. J. Dowrick, B. Reynolds, M. A. Lock, D. Sleep, S. Hughes, and J. Hudson, 2004. Dissolved organic carbon export from peatlands under elevated carbon dioxide levels. Nature 430, 195-198
Freeman, C., G. B. Nevison, H. Kang, S. Hughes, B. Reynolds, and J. A. Hudson, 2002: Contrasted effects of simulated drought on the production and oxidation of methane in a mid-Wales wetland. Soil Biology and Biochemistry 34, 61-67
Freeman, C., G. Liska, N. J. Ostle, J. A. Hudson., M. A. Lock, and B. Reynolds, 1996: Microbial activity and enzymic decomposition processes following peatland water table drawdown. Plant and Soil 180, 121-127
Freeman, C., N. J. Ostle, and H. Kang, 2001: An enzymic latch on a global carbon store. Nature 409: 149
Freeman, C., M. A. Lock, and B. Reynolds, 1993: Fluxes of carbon dioxide, methane and nitrous oxide from a Welsh peatland following simulation of water table draw-down: Potential feedback to climatic change. Biogeochemistry 19, 51-60
Gorham, E., 1991: Northern peatlands: role in the carbon cycle and probable to climatic warming. Ecological Applications 1, 182-195
Griffiths, B. S., K. Ritz, N. Ebblewhite, E. Paterson, and K. Killham, 1998: Ryegrass rhizosphere microbial community structure under elevated carbon dioxide concentrations with observations on wheat rhizosphere. Soil Biology and Biochemistry 30(3), 315-321
Gruter, D., B. Schmid, and H. Brandl, 2006: Influence of plant diversity and elevated atmospheric carbon dioxide levels on belowground bacterial diversity. BMC Microbiology 6, 68-76
Heilman, J. L., F. A. Heinsch, D. R. Cobos, and K. J. McInnes, 2000: Energy balance of a high marsh on the Texas Gulf Coast: effect of water availability. Journal of Geophysical Research 105, 22371-22377
Heinsch, F. A., J. L. Heilman, K. J. McInnes, D. R. Cobos, D. A. Zuberer, and D. L. Roelke, 2004: Carbon dioxide exchange in a high marsh on the Texas Gulf Coast: effects of freshwater availability. Agricultural and Forest Meteorology 125, 159-172
Hirschel, G., C. Korner, and J. A. Arnone III, 1997: Will rising atmospheric $CO_2$ affect leaf litter quality and in situ decomposition rates in native plant communities? Oecologia 110, 387-392
Hooper, D. U., D. E. Bignell, V. K., Brown, L. Brussaard, J. M, Dangerfield, D. H. Wall, and A. D. Wardle, D. C. Coleman, K. E. Giller, P. Lavelle, W. H. Van Del Putten, P. C. de Ruiter, J. Rusek, W. L. Silver, J. M. Tiedje, and V. Wolters, 2000: Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. Bioscience 50, 1049-1061
Hutchin, P. R., M. C. Press, J. A. Lee, and T. W. Ashenden, 1995: Elevated concentrations of $CO_2$ may double methane emissions from mires. Global Change Biology 1, 125-128
IPCC, 2001: Climate Change 2001: the scientific basis. Cambridge University Press
Janus, L. R., N. L. Angeloni, J. McCormack, S. T. Rier, N. C. Tuchman, and J. J. Kelly, 2005: Elevated atmospheric $CO_2$ alters soil microbial communities associated with Trembling Aspen (Populus tremuloides) roots. Microbial Ecology 50(1), 102-109
Jauhiainen, J., J. Silvola, K. Tolonen, and H. Vasander, 1997: Response of Sphagnum fuscum to water levels and $CO_2$ concentration. Journal of Bryology 19, 391-400
Jossi, M., N. Fromin, S. Tarnawski, F. Kohler, F. Gillet, M. Aragno, and J. Hamelin, 2006: How elevated $pCO_2$ modifies total and metabolically active bacterial communities in the rhizosphere of two perennial grasses grown under field conditions. FEMS Microbiology Ecology 55,339- 350
Kang, H. J., C. Freeman, and T. W. Ashendon, 2001: Effects of elevated $CO_2$ on fen peat biogeochemistry. The Science of the Total Environment 279, 45-50
Kang, H. J., S. Y. Kim, N. Fenner, and C. Freeman, 2005: Shifts of soil enzyme activities in wetlands exposed to elevated $CO_2$ . Science of the Total Environment 337, 207-212
Kim, J., S. B. Verma, and D. P. Billesbach, 1999: Seasonal variation in methane emission from a temperate Phragmites- dominated marsh: effect of growth stage and plant-mediated transport. Global Change Biology 5(4), 433-440
Kim, J., and S. B. Verma, 1992: Soil surface $CO_2$ flux in a Minnesota peatland. Biogeochemistry 18, 37-51
Kim, J., S. B. Verma, D. P. Billesbach, and R. J. Clement, 1998: Diel variation in methane emission from a midlatitude prairie wetland: significance of convective throughflow in phragmites australis. Journal of Geophysical research 103, 28029-28039
Kim, S. Y., 2007: A study of wetland vegetation and microbial communities under elevated $CO_2$ , warming, and drought. PhD dissertation, Ewha Womans University
Knorr, W., I. C. Prentice, J. I. House, and E. A. Holland, 2005: On the available evidence for the temperature dependence of soil organic carbon. Biogeosciences Discussions 2, 749-755
Lafleur, P. M., T. R. Moore, N. T. Roulet, and S. Frolking, 2005: Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8, 619-629
Lipson, D. A., M. Blair, G. Barron-Gafford, K. Grieve, and R. Murthy, 2006: Relationships between microbial community structure and soil processes under elevated atmospheric carbon dioxide. Microbial Ecology 51(3), 302-314
Lueders, T., and M. Friedrich, 2000: Archaeal population dynamics during sequential reduction processes in rice field soil. Applied and Environmental Microbiology 66(7), 2732-2742
Marilley, L., U. A. Hartwig, and M. Aragno, 1999: Influence of an elevated atmospheric $CO_2$ content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microbial Ecology 38, 39-49
Mayer, H. P., and R. Conrad, 1990: Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil. FEMS Microbiology Ecology 73, 103-112
McCune, B., and J. B. Grace, 2002: Analysis of Ecological Communities. Gleneden Beach. MjM Software Design, 300pp
Megonigal, J. P., and W. H. Schlesinger, 1997: Enhanced $CH_4$ emission from a wetland soil exposed to elevated $CO_2$ . Biogeochemistry 37(1), 77-88
Metje, M., and P. Frenzel, 2005: Effect of temperature on anaerobic ethanol oxidation and methanogenesis in acidic peat from a northern wetland. Applied and Environmental Microbiology 71(12), 8191-8200
Mitchell, E. A. D., A. Buttler, P. Grosvernier, H. Rydin, A. Siegenthaler, and J. M. Gobat, 2002: Contrasted effects of increased N and $CO_2$ supply on two keystone species in peatland restoration and implications for global change. Ecology 90, 529-533
Montealegre, C. M., C. van Kessel, J. M. Blumenthal, H. Hur, U. A. Hartwig, and M. J. Sadowsky, 2000: Elevated Atmospheric $CO_2$ alters microbial population structure in a pasture ecosystem. Global Change Biology 6, 475-482
Montealegre, C. M., C. van Kessel, M. P. Russelle, and M. J. Sadowsky, 2002: Changes in microbial activity and composition in a pasture ecosystem exposed to elevated atmospheric carbon dioxide. Plant and Soil 243(2), 197-207
Moore, T. R., and N. T. Roulet, 1993: Methane flux: Water table relations in northern wetlands. Geophysical Research Letters 20(7), 587-590
Moore, T. R., and R. Knowles, 1989: Influence of water table levels on methane and carbon dioxide emissions from peatland soils. Canadian Journal of Soil Science 69(1), 33-38
Moore, T. R., J. L. Bubier, S. E. Frolking, P. M. Lafleur, and N. T. Roulet, 2002: Plant biomass and production and $CO_2$ exchange in an ombrotrophic bog. Journal of Ecology 90(1), 25-36
Nannipieri, P., J. Ascher, M. T. Ceccherini, L. Landi, G. Pietramellara, and G.. Renella, 2003: Microbial diversity and soil functions. European Journal of Soil Science 54(4), 655-670
Niklaus, P. A., D. Alphei, D. Ebersberger, C. Kampichler, E. Kandeler, and D. Tscherko, 2003: Six years of in situ $CO_2$ enrichment evoke changes in soil structure and soil biota of nutrient-poor grassland. Global Change Biology 9, 585-600
Niklaus, P. A., and C. Korner, 1996: Responses of soil microbiota of a late successional alpine grassland to long term $CO_2$ enrichment. Plant and Soil 184(2), 219-229
Oechel, W. C., G. L. Vourlitis, S. J. Hastings, R. P. Ault, and P. Bryant, 1998: The effects of water table manipulation and elevated temperature on the net $CO_2$ flux of wet sedge tundra ecosystems. Global Change Biology 4, 77-90
Phillips, R. L., D. R. Zak, W. E. Holmes, and D. C. White, 2002: Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 131(2), 236-244
Ratering, S., and R. Conrad, 1998: Effects of short-term drainage and aeration on the production of methane in submerged rice soil. Global Change Biology 4(4), 397-407
Rees, G. N., G. O. Watson, D. S. Baldwin, and A. M. Mitchell, 2006: Variability in sediment microbial communities in a semipermanent stream: impact of drought. Journal of the North American Benthological Society 25(2), 370-378
Robertson, G. P., and J. M. Tiedje, 1987: Nitrous oxide sources in aerobic soils: Nitrification, denitrification and other biological processes. Soil Biology and Biochemistry 19(2), 187-193
Roulet, N. T, R. Ash, and T. R. Moore, 1992: Low boreal wetlands as a source of atmospheric methane. Journal of Geophysical Research 97, 3739-3749
Roulet, N. T., 2000: Peatlands, carbon storage, greenhouse gases, and the kyoto protocol: prospects and significance for Canada. Wetlands 20(4), 605-615
Saarnio, S., and J. Silvola, 1999: Effects of increased $CO_2$ and N on $CH_4$ efflux from a boreal mire: a growth chamber experiment. Oecologia 119(3), 349-356
Saarnio, S., T. Saarinen, H. Vasander, and J. Silvola, 2000: A moderate increase in the annual $CH_4$ efflux by raised $CO_2$ or $NH_4NO_3$ supply in a boreal oligotrophic mire. Global Change Biology 6(2), 137-144
Schreader, C. P., W. R. Rouse, T. J. Griffis, L. D. Boudreau, and P. D. Blanken, 1998: Carbon dioxide fluxes in a northern fen during a hot-dry summer. Global Biogeochemical Cycles 12, 729-740
Schrope, M. K., J. P. Chanton, L. H. Allen, and J. T. Baker, 1999: Effect of $CO_2$ enrichment and elevated temperature on methane emissions from rice Oryza sativa. Global Change Biology 5, 587-599
Shurpali, N. J., S. B. Verma, J. Kim, and T. J. Arkebauer, 1995: Carbon dioxide exchange in a peatland ecosystem. Journal of Geophysical Research 100, 14319-14326
Sowerby, A., B. Emmett, C. Beier, A. Tietema, J. Penuelas, M. Estiarte, M. J. M.Van Meeteren, S. Hughes, and C. Freeman, 2005: Microbial community changes in heathland soil communities along a geographical gradient: interaction with climate change manipulations. Soil Biology and Biochemistry 37, 1805-1813
Thormann, M. N., S. E. Bayley, and R. S. Currah, 2004: Microcosm tests of the effects of temperature and microbial species number on the decomposition of Carex aquatilis and Sphagnum fuscum litter from southern boreal peatlands. Canadian Journal of Microbiology 50, 793-802
Tingey, D. T., E. H. Lee, R. Waschmann, M. G. Johnson, and P. T. Rygiewicz, 2006: Does soil $CO_2$ efflux acclimatize to elevated temperature and $CO_2$ during ong-term treatment of Douglas-fir seedlings? New Phytologist 170, 107-118
Updegraff, K., S. D. Bridgham, J. Pastor, P. Weishampel, and C. Harth, 2001: Response of $CO_2$ and $CH_4$ emissions from peatlands to warming and water table manipulation. Ecological Applications 11(2), 311-326
Updegraff, K., J. Pastor, S. D. Bridgham, and C. A. Johnston, 1995: Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecological Applications 5(1), 151-163
Waldrop, M. P., and M. K. Firestone, 2004: Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry 67, 235-248
Wang, B., and K. Adachi, 1999: Methane production in a flooded soil in response to elevated atmospheric carbon dioxide concentrations. Biology of Fertile Soils 29, 218-220
Whiting, G. J., and J. P. Chanton, 1993: Primary production control of methane emission from wetlands. Nature 364, 794-795
Wiemken, V., E. Laczko, K. Ineichen, and T. Boller, 2001: Effects of elevated carbon dioxide and nitrogen fertilization on mycorrhizal fine roots and the soil microbial community in Beech-Spruce ecosystems on siliceous and calcareous soil. Microbial Ecology 42(2), 126-135
Yavitt, J. B., and M. Seidman-Zager, 2006: Methanogenic conditions in northern peat soils. Geomicrobiology Journal 23, 119-127
Zak, D. R., K. S. Pregitzer, J. S. King, and W. E. Holmes, 2000: Elevated atmospheric $CO_2$ , fine roots and the response of soil microorganisms: a review and hypothesis. New Phytologist 147(1), 201-222
Zhang, W., K. M. Parker, Y. Luo, S. Wan, L. L. Wallace, and S. Hu, 2005: Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Global Change Biology 11, 266-277
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.