$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 기후변화가 습지 내 온실기체 발생과 미생물 군집구조에 미치는 영향
Climate Effects on Greenhouse Gas Emissions and Microbial Communities in Wetlands 원문보기

한국농림기상학회지 = Korean Journal of Agricultural and Forest Meteorology, v.9 no.3, 2007년, pp.161 - 169  

김선영 (이화여자대학교 환경공학과) ,  강호정 (연세대학교 토목환경공학부)

초록
AI-Helper 아이콘AI-Helper

대기 중 이산화탄소 농도 및 온도 증가와 강수 패턴 변화에 따른 가뭄 정도 및 횟수의 변화는 습지에서 발생하는 온실가스의 양에 영향을 미칠 수 있다. 습지에 존재하는 다양한 미생물 군집(탈질세균 및 메탄생성세균) 이 온실가스 생성에 있어 중요한 역할을 감당한다. 본 논문은 지금까지 전지구적 기후변화가 습지에서의 온실가스 발생과 관련 미생물 군집에 미치는 영향에 관한 다양한 연구를 정리하는 데 그 목적이 있다. 대기 중 이산화탄소 농도와 기온 증가는 일반적으로 온실가스 생성을 증가시켰다. 반면, 가뭄의 영향은 기체 종류와 가뭄 정도에 따라 다양한 결과가 보고되었다. 기후변화에 따른 미생물 군집의 변화는 습지시스템에서 보고된 연구의 부족으로 인해 특정한 결론을 도출할 수 없었다. 본 총설은 습지에서 미생물을 매개로 한 반응을 연구함에 있어 관련 미생물 군집구조의 특성을 파악하고, 다양한 환경인자에 대한 그들의 반응을 알아내는 것과 미생물 반응과 군집구조간의 상관 관계를 도출하는 것의 중요성을 제안한다. 이는 향후 전지구적 기후 변화가 습지의 생태학적 기능에 미칠 영향을 더 잘 이해하고 예측하는데 있어 매우 중요할 것이라 사료된다.

Abstract AI-Helper 아이콘AI-Helper

Global climate changes including elevated $CO_2$, drought, and global warming may influence greenhouse gas emissions in wetlands. A variety of microbial communities including denitrifiers and methanogens play a key role in determining such processes. In this paper we summarize current kno...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 습지에 존재하는 다양한 미생물 군집탈질세균 및 메탄생성세균) 이 온실가스 생성에 있어 중요한 역할을 감당한다. 본 논문은 지금까지 전지구적 기후변화가 습지에서의 온실가스 발생과 관련 미생물 군집에 미치는 영향에 관한 다양한 연구를 정리하는데 그 목적이 있다. 대기 중 이산화탄소 농도와 기온 증가는 일반적으로 온실가스 생성을 증가시켰다.
  • 기후변화에 따른 미생물 군집의 변화는 습지 시스템에서 보고된 연구의 부족으로 인해 특정한 결론을 도출할 수 없었다. 본 총설은 습지에서 미생물을 매개로 한 반응을 연구함에 있어 관련 미생물 군집구조의 특성을 파악하고, 다양한 환경인자에 대한 그들의 반응을 알아내는 것과 미생물 반응과 군집구조간의 상관 관계를 도출하는 것의 중요성을 제안한다. 이는 향후 전지구적 기후 변화가 습지의 생태학적 기능에 미칠 영향을 더 잘 이해하고 예측하는데 있어 매우 중요할 것이라 시료된다.
  • However, the effects of climate changes on soil microbial community and activity, and their relationship remain largely unknown in wetlands. The aim of this paper is to summarize current knowledge on the effects of elevated CO2, drought, and warming on biogenic gas emissions (CO* CKj, and N2O) and microbial communities in wetland ecosystems.

가설 설정

  • future directions of research. First, the combined effects of climate changes should be considered. Interactions of elevated CO2, drought, and warming may be different from separate effect.
본문요약 정보가 도움이 되었나요?

참고문헌 (89)

  1. Alm, J., L. Schulman, J. Walden, H. Nykanen, P. J. Martikainen, and J. Silvola, 1999: Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80, 161-174 

  2. Baldwin, D. S., and A. M. Mitchell, 2000: The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-flood plain systems: a synthesis. Regulated Rivers Research and Management 16(5), 457-467 

  3. Bayley, S. E., R. S. Behr, and C. A. Elly, 1986: Retention and release of S from A freshwater wetland. Water, Air, and Soil Pollution 31(1-2), 101-114 

  4. Biasi, C., O. Rusalimova, H. Meyer, C. Kaiser, W. Wanek, P. Barsukov, H. Junger, and A. Richter, 2005: Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. Rapid Communications in Mass Spectrometry 19, 1401-1408 

  5. Boon, P. I., A. Mitchell, and K. Lee, 1997: Effects of wetting and drying on methane emissions from ephemeral floodplain wetlands in south-eastern Australia. Hydrobiologia 357, 73-87 

  6. Briones, M. J. I., J. Poskitt, and N. Ostle, 2004: Influence of warming and enchytraeid activities on soil $CO_2$ and $CH_4$ fluxes. Soil Biology and Biochemistry 36, 1851-1859 

  7. Carnol, M., and P. Ineson, 1999: Environmental factors controlling $NO^{3?}$ leaching, $N_2O$ emissions and numbers of $NH^{4+}$ oxidisers in a coniferous forest soil. Soil Biology and Biochemistry 31(7), 979-990 

  8. Chin, K. J., T. Lukow, and R. Conrad, 1999: Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Applied and Environmental Microbiology 65(6), 2341-2349 

  9. Chung, H., D. R. Zak, and E. A. Lilleskov, 2006: Fungal community composition and metabolism under elevated $CO_2$ and $O_3$ . Oecologia 147(1), 143-154 

  10. Cicerone, R. J., and R. S. Oremland, 1988: Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles 2, 299-327 

  11. Cole, L., R. D. Bardgett, D. P. Ineson, and P. J. Hobbs, 2002: Enchytraeid worm (Oligochaeta) influences on microbial community structure, nutrient dynamics and plant growth in blanket peat subjected to warming. Soil Biology and Biochemistry 34(1), 83-92 

  12. Corstanje, R., 2003: Experimental and multivariate analysis of biogeo-indicators of change in wetland ecosystems. Ph.D. dissertation. University of Florida, Gainesville 

  13. Davidsson, T. E., M. Trepel, and J. Schrautzer, 2002: Denitrification in drained and rewetted minerotrophic peat soils in Northern Germany (Pohnsdorfer Stauung). Journal of Plant Nutrition and Soil Science 165(2), 199-204 

  14. Deiglmayr, K., L. Philippot, U. A. Hartwig, and E. Kandeler, 2004: Structure and activity of the nitrate-reducing community in the rhizosphere of Lolium perenne and Trifolium repens under long-term elevated atmospheric $pCO_2$ . FEMS Microbiology Ecology 49, 445-454 

  15. Deslippe, J. R., K. N. Egger, and G. H. R. Henry, 2005: Impacts of warming and fertilization on nitrogen-fixing microbial communities in the Canadian High Arctic. FEMS Microbiology Ecology 53(1), 41-50 

  16. Dowrick, D. J., C. Freeman, M. A. Lock, and B. Reynolds, 2006: Sulphate reduction and the suppression of peatland methane emissions following summer drought. Geoderma 132, 384-390 

  17. Eliasson, P. E., R. E. McMurtrie, D. A. Pepper, M. Stromgren, S. Linder, and G. I. Agren, 2005: The response of heterotrophic $CO_2$ flux to soil warming. Global Change Biology 11(1), 167-181 

  18. Fenner, N., C. Freeman, and B. Reynolds, 2005: Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies. Soil Biology and Biochemistry 37(10), 1814-1821 

  19. Fenner, N., D. J. Dowrick, M. A. Lock, C. R. Rafarel, and C. Freeman, 2006: A novel approach to studying the effects of temperature on soil biogeochemistry using a thermal gradient bar. Soil Use and Management 22, 267-273 

  20. Fey, A., and R. Conrad, 2000: Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Applied and Environmental Microbiology 66(11), 4790-4797 

  21. Fierer, N., B. P. Colman, J. P. Schimel, and R. B. Jackson, 2006: Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis. Global Biogeochemical Cycles 20, GB3026 

  22. Fierer, N., J. P. Schimel, and P. A. Holden, 2003: Influence of drying-rewetting frequency on soil bacterial community structure. Microbial Ecology 45, 63-71 

  23. Freeman, C, J. Hudson, M. A. Lock, B. Reynolds, and C. Swanson, 1994: A possible role for sulphate in the suppression of methane fluxes following drought. Soil Biology and Biochemistry 26, 1439-1442 

  24. Freeman, C, N. Fenner, N. J. Ostle, H. Kang, D. J. Dowrick, B. Reynolds, M. A. Lock, D. Sleep, S. Hughes, and J. Hudson, 2004. Dissolved organic carbon export from peatlands under elevated carbon dioxide levels. Nature 430, 195-198 

  25. Freeman, C., G. B. Nevison, H. Kang, S. Hughes, B. Reynolds, and J. A. Hudson, 2002: Contrasted effects of simulated drought on the production and oxidation of methane in a mid-Wales wetland. Soil Biology and Biochemistry 34, 61-67 

  26. Freeman, C., G. Liska, N. J. Ostle, J. A. Hudson., M. A. Lock, and B. Reynolds, 1996: Microbial activity and enzymic decomposition processes following peatland water table drawdown. Plant and Soil 180, 121-127 

  27. Freeman, C., N. J. Ostle, and H. Kang, 2001: An enzymic latch on a global carbon store. Nature 409: 149 

  28. Freeman, C., M. A. Lock, and B. Reynolds, 1993: Fluxes of carbon dioxide, methane and nitrous oxide from a Welsh peatland following simulation of water table draw-down: Potential feedback to climatic change. Biogeochemistry 19, 51-60 

  29. Gorham, E., 1991: Northern peatlands: role in the carbon cycle and probable to climatic warming. Ecological Applications 1, 182-195 

  30. Griffiths, B. S., K. Ritz, N. Ebblewhite, E. Paterson, and K. Killham, 1998: Ryegrass rhizosphere microbial community structure under elevated carbon dioxide concentrations with observations on wheat rhizosphere. Soil Biology and Biochemistry 30(3), 315-321 

  31. Gruter, D., B. Schmid, and H. Brandl, 2006: Influence of plant diversity and elevated atmospheric carbon dioxide levels on belowground bacterial diversity. BMC Microbiology 6, 68-76 

  32. Heilman, J. L., F. A. Heinsch, D. R. Cobos, and K. J. McInnes, 2000: Energy balance of a high marsh on the Texas Gulf Coast: effect of water availability. Journal of Geophysical Research 105, 22371-22377 

  33. Heinsch, F. A., J. L. Heilman, K. J. McInnes, D. R. Cobos, D. A. Zuberer, and D. L. Roelke, 2004: Carbon dioxide exchange in a high marsh on the Texas Gulf Coast: effects of freshwater availability. Agricultural and Forest Meteorology 125, 159-172 

  34. Hirschel, G., C. Korner, and J. A. Arnone III, 1997: Will rising atmospheric $CO_2$ affect leaf litter quality and in situ decomposition rates in native plant communities? Oecologia 110, 387-392 

  35. Hooper, D. U., D. E. Bignell, V. K., Brown, L. Brussaard, J. M, Dangerfield, D. H. Wall, and A. D. Wardle, D. C. Coleman, K. E. Giller, P. Lavelle, W. H. Van Del Putten, P. C. de Ruiter, J. Rusek, W. L. Silver, J. M. Tiedje, and V. Wolters, 2000: Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. Bioscience 50, 1049-1061 

  36. Hutchin, P. R., M. C. Press, J. A. Lee, and T. W. Ashenden, 1995: Elevated concentrations of $CO_2$ may double methane emissions from mires. Global Change Biology 1, 125-128 

  37. IPCC, 2001: Climate Change 2001: the scientific basis. Cambridge University Press 

  38. Janus, L. R., N. L. Angeloni, J. McCormack, S. T. Rier, N. C. Tuchman, and J. J. Kelly, 2005: Elevated atmospheric $CO_2$ alters soil microbial communities associated with Trembling Aspen (Populus tremuloides) roots. Microbial Ecology 50(1), 102-109 

  39. Jauhiainen, J., J. Silvola, K. Tolonen, and H. Vasander, 1997: Response of Sphagnum fuscum to water levels and $CO_2$ concentration. Journal of Bryology 19, 391-400 

  40. Jossi, M., N. Fromin, S. Tarnawski, F. Kohler, F. Gillet, M. Aragno, and J. Hamelin, 2006: How elevated $pCO_2$ modifies total and metabolically active bacterial communities in the rhizosphere of two perennial grasses grown under field conditions. FEMS Microbiology Ecology 55,339- 350 

  41. Kang, H. J., C. Freeman, and T. W. Ashendon, 2001: Effects of elevated $CO_2$ on fen peat biogeochemistry. The Science of the Total Environment 279, 45-50 

  42. Kang, H. J., S. Y. Kim, N. Fenner, and C. Freeman, 2005: Shifts of soil enzyme activities in wetlands exposed to elevated $CO_2$ . Science of the Total Environment 337, 207-212 

  43. Kim, J., S. B. Verma, and D. P. Billesbach, 1999: Seasonal variation in methane emission from a temperate Phragmites- dominated marsh: effect of growth stage and plant-mediated transport. Global Change Biology 5(4), 433-440 

  44. Kim, J., and S. B. Verma, 1992: Soil surface $CO_2$ flux in a Minnesota peatland. Biogeochemistry 18, 37-51 

  45. Kim, J., S. B. Verma, D. P. Billesbach, and R. J. Clement, 1998: Diel variation in methane emission from a midlatitude prairie wetland: significance of convective throughflow in phragmites australis. Journal of Geophysical research 103, 28029-28039 

  46. Kim, S. Y., 2007: A study of wetland vegetation and microbial communities under elevated $CO_2$ , warming, and drought. PhD dissertation, Ewha Womans University 

  47. Knorr, W., I. C. Prentice, J. I. House, and E. A. Holland, 2005: On the available evidence for the temperature dependence of soil organic carbon. Biogeosciences Discussions 2, 749-755 

  48. Lafleur, P. M., T. R. Moore, N. T. Roulet, and S. Frolking, 2005: Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8, 619-629 

  49. Lee, S. H., S. Y. Kim, and H. J. Kang, 2004: Influence of elevated $CO_2$ on denitrifying bacterial community in a wetland soil. Korean Journal of Microbiology 40(3), 244-247 

  50. Lipson, D. A., M. Blair, G. Barron-Gafford, K. Grieve, and R. Murthy, 2006: Relationships between microbial community structure and soil processes under elevated atmospheric carbon dioxide. Microbial Ecology 51(3), 302-314 

  51. Lueders, T., and M. Friedrich, 2000: Archaeal population dynamics during sequential reduction processes in rice field soil. Applied and Environmental Microbiology 66(7), 2732-2742 

  52. Marilley, L., U. A. Hartwig, and M. Aragno, 1999: Influence of an elevated atmospheric $CO_2$ content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microbial Ecology 38, 39-49 

  53. Mayer, H. P., and R. Conrad, 1990: Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil. FEMS Microbiology Ecology 73, 103-112 

  54. McCune, B., and J. B. Grace, 2002: Analysis of Ecological Communities. Gleneden Beach. MjM Software Design, 300pp 

  55. Megonigal, J. P., and W. H. Schlesinger, 1997: Enhanced $CH_4$ emission from a wetland soil exposed to elevated $CO_2$ . Biogeochemistry 37(1), 77-88 

  56. Metje, M., and P. Frenzel, 2005: Effect of temperature on anaerobic ethanol oxidation and methanogenesis in acidic peat from a northern wetland. Applied and Environmental Microbiology 71(12), 8191-8200 

  57. Mitchell, E. A. D., A. Buttler, P. Grosvernier, H. Rydin, A. Siegenthaler, and J. M. Gobat, 2002: Contrasted effects of increased N and $CO_2$ supply on two keystone species in peatland restoration and implications for global change. Ecology 90, 529-533 

  58. Montealegre, C. M., C. van Kessel, J. M. Blumenthal, H. Hur, U. A. Hartwig, and M. J. Sadowsky, 2000: Elevated Atmospheric $CO_2$ alters microbial population structure in a pasture ecosystem. Global Change Biology 6, 475-482 

  59. Montealegre, C. M., C. van Kessel, M. P. Russelle, and M. J. Sadowsky, 2002: Changes in microbial activity and composition in a pasture ecosystem exposed to elevated atmospheric carbon dioxide. Plant and Soil 243(2), 197-207 

  60. Moore, T. R., and N. T. Roulet, 1993: Methane flux: Water table relations in northern wetlands. Geophysical Research Letters 20(7), 587-590 

  61. Moore, T. R., and R. Knowles, 1989: Influence of water table levels on methane and carbon dioxide emissions from peatland soils. Canadian Journal of Soil Science 69(1), 33-38 

  62. Moore, T. R., J. L. Bubier, S. E. Frolking, P. M. Lafleur, and N. T. Roulet, 2002: Plant biomass and production and $CO_2$ exchange in an ombrotrophic bog. Journal of Ecology 90(1), 25-36 

  63. Nannipieri, P., J. Ascher, M. T. Ceccherini, L. Landi, G. Pietramellara, and G.. Renella, 2003: Microbial diversity and soil functions. European Journal of Soil Science 54(4), 655-670 

  64. Niklaus, P. A., D. Alphei, D. Ebersberger, C. Kampichler, E. Kandeler, and D. Tscherko, 2003: Six years of in situ $CO_2$ enrichment evoke changes in soil structure and soil biota of nutrient-poor grassland. Global Change Biology 9, 585-600 

  65. Niklaus, P. A., and C. Korner, 1996: Responses of soil microbiota of a late successional alpine grassland to long term $CO_2$ enrichment. Plant and Soil 184(2), 219-229 

  66. Oechel, W. C., G. L. Vourlitis, S. J. Hastings, R. P. Ault, and P. Bryant, 1998: The effects of water table manipulation and elevated temperature on the net $CO_2$ flux of wet sedge tundra ecosystems. Global Change Biology 4, 77-90 

  67. Phillips, R. L., D. R. Zak, W. E. Holmes, and D. C. White, 2002: Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 131(2), 236-244 

  68. Ratering, S., and R. Conrad, 1998: Effects of short-term drainage and aeration on the production of methane in submerged rice soil. Global Change Biology 4(4), 397-407 

  69. Rees, G. N., G. O. Watson, D. S. Baldwin, and A. M. Mitchell, 2006: Variability in sediment microbial communities in a semipermanent stream: impact of drought. Journal of the North American Benthological Society 25(2), 370-378 

  70. Robertson, G. P., and J. M. Tiedje, 1987: Nitrous oxide sources in aerobic soils: Nitrification, denitrification and other biological processes. Soil Biology and Biochemistry 19(2), 187-193 

  71. Roulet, N. T, R. Ash, and T. R. Moore, 1992: Low boreal wetlands as a source of atmospheric methane. Journal of Geophysical Research 97, 3739-3749 

  72. Roulet, N. T., 2000: Peatlands, carbon storage, greenhouse gases, and the kyoto protocol: prospects and significance for Canada. Wetlands 20(4), 605-615 

  73. Saarnio, S., and J. Silvola, 1999: Effects of increased $CO_2$ and N on $CH_4$ efflux from a boreal mire: a growth chamber experiment. Oecologia 119(3), 349-356 

  74. Saarnio, S., T. Saarinen, H. Vasander, and J. Silvola, 2000: A moderate increase in the annual $CH_4$ efflux by raised $CO_2$ or $NH_4NO_3$ supply in a boreal oligotrophic mire. Global Change Biology 6(2), 137-144 

  75. Schreader, C. P., W. R. Rouse, T. J. Griffis, L. D. Boudreau, and P. D. Blanken, 1998: Carbon dioxide fluxes in a northern fen during a hot-dry summer. Global Biogeochemical Cycles 12, 729-740 

  76. Schrope, M. K., J. P. Chanton, L. H. Allen, and J. T. Baker, 1999: Effect of $CO_2$ enrichment and elevated temperature on methane emissions from rice Oryza sativa. Global Change Biology 5, 587-599 

  77. Shurpali, N. J., S. B. Verma, J. Kim, and T. J. Arkebauer, 1995: Carbon dioxide exchange in a peatland ecosystem. Journal of Geophysical Research 100, 14319-14326 

  78. Sowerby, A., B. Emmett, C. Beier, A. Tietema, J. Penuelas, M. Estiarte, M. J. M.Van Meeteren, S. Hughes, and C. Freeman, 2005: Microbial community changes in heathland soil communities along a geographical gradient: interaction with climate change manipulations. Soil Biology and Biochemistry 37, 1805-1813 

  79. Thormann, M. N., S. E. Bayley, and R. S. Currah, 2004: Microcosm tests of the effects of temperature and microbial species number on the decomposition of Carex aquatilis and Sphagnum fuscum litter from southern boreal peatlands. Canadian Journal of Microbiology 50, 793-802 

  80. Tingey, D. T., E. H. Lee, R. Waschmann, M. G. Johnson, and P. T. Rygiewicz, 2006: Does soil $CO_2$ efflux acclimatize to elevated temperature and $CO_2$ during ong-term treatment of Douglas-fir seedlings? New Phytologist 170, 107-118 

  81. Updegraff, K., S. D. Bridgham, J. Pastor, P. Weishampel, and C. Harth, 2001: Response of $CO_2$ and $CH_4$ emissions from peatlands to warming and water table manipulation. Ecological Applications 11(2), 311-326 

  82. Updegraff, K., J. Pastor, S. D. Bridgham, and C. A. Johnston, 1995: Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecological Applications 5(1), 151-163 

  83. Waldrop, M. P., and M. K. Firestone, 2004: Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry 67, 235-248 

  84. Wang, B., and K. Adachi, 1999: Methane production in a flooded soil in response to elevated atmospheric carbon dioxide concentrations. Biology of Fertile Soils 29, 218-220 

  85. Whiting, G. J., and J. P. Chanton, 1993: Primary production control of methane emission from wetlands. Nature 364, 794-795 

  86. Wiemken, V., E. Laczko, K. Ineichen, and T. Boller, 2001: Effects of elevated carbon dioxide and nitrogen fertilization on mycorrhizal fine roots and the soil microbial community in Beech-Spruce ecosystems on siliceous and calcareous soil. Microbial Ecology 42(2), 126-135 

  87. Yavitt, J. B., and M. Seidman-Zager, 2006: Methanogenic conditions in northern peat soils. Geomicrobiology Journal 23, 119-127 

  88. Zak, D. R., K. S. Pregitzer, J. S. King, and W. E. Holmes, 2000: Elevated atmospheric $CO_2$ , fine roots and the response of soil microorganisms: a review and hypothesis. New Phytologist 147(1), 201-222 

  89. Zhang, W., K. M. Parker, Y. Luo, S. Wan, L. L. Wallace, and S. Hu, 2005: Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Global Change Biology 11, 266-277 

저자의 다른 논문 :

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로