$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

In this study, a genetic algorithm was utilized to optimize the stacking sequence of a composite plate subjected to a high velocity impact. The aim is to minimize the maximum backplane displacement of the plate. In the finite element model, we idealized the impactor using solid elements and modeled ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • We made a finite element model by using shell elements for the composite plate. In addition, we conducted another test using a sequential response surface method for comparison. This is the preliminary result of a project that intends to develop an efficient modeling methodology for high velocity impacts to composite laminates.
  • Chen (2001) introduced a practical approach for impact structure and crash-worthiness optimization. The approach took advantage of the global-searching ability of genetic algorithms while also considering the instability of explicit finite element analysis. Recently, Yong et al.
  • In this case, energy absorption and backplane displacement of the helmet are important factors. The current study focuses on the application of a genetic algorithm available in LS-OPT (version 3.3; Livermore Software Technology Corporation) (Stander et al., 2008) to minimize the maximum backplane displacement of a laminated panel subjected to a high velocity impact by optimizing its stacking sequence.
  • (2008) adopted a genetic algorithm to optimize the response of a composite laminate due to impact. The genetic algorithm was coupled with the explicit finite element package LS DYNA (Livermore Software Technology Corporation, Livermore, CA, USA) to perform the impact analyses.
  • We used an explicit finite element package, LS DYNA, for the fitness evaluation in the algorithm. We performed several tests with different parameters in order to investigate the effect of population size, variable type, and mutation probability. We carried out an additional test with the sequential response surface method in LS-OPT for comparison.

대상 데이터

  • The panel had dimensions of 101.6 mm × 152.4 mm and a thickness of 9.5 mm with 19 plies laid up.
  • Due to the symmetry of the panel and the projectile, a quarter of the panel was generated to reduce the analysis time. The projectile was modeled using solid elements, and the composite panels were generated with shell elements. Material number 59 (MAT #59) in LS DYNA was applied to model the composite plies.
본문요약 정보가 도움이 되었나요?

참고문헌 (22)

  1. Arora, J. S. (2004). Introduction to Optimum Design. 2nd ed. New York: Elsevier/Academic Press. 

  2. Arora, J. S., Huang, M. W., and Hsieh, C. C. (1994). Methods for optimization of nonlinear problems with discrete variables: A review. Structural Optimization, 8, 69-85. 

  3. Baker, A. A., Dutton, S., and Kelly, D. (2004). Composite Materials for Aircraft Structures. 2nd ed. Reston, VA: American Institute of Aeronautics and Astronautics. 

  4. Chambers, A. R., Mowlem, M. C., and Dokos, L. (2007). Evaluating impact damage in CFRP using fibre optic sensors. Composites Science and Technology, 67, 1235-1242. 

  5. Chen, J. K., Allahdadi, F. A., and Carney, T. C. (1997). Highvelocity impact of graphite/epoxy composite laminates. Composites Science and Technology, 57, 1369-1379. 

  6. Chen, S. Y. (2001). An approach for impact structure optimization using the robust genetic algorithm. Finite Elements in Analysis and Design, 37, 431-446. 

  7. De Jong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD Thesis, University of Michigan. 

  8. Fujii, K., Aoki, M., Kiuchi, N., Yasuda, E., and Tanabe, Y. (2002). Impact perforation behavior of CFRPs using high-velocity steel sphere. International Journal of Impact Engineering, 27, 497-508. 

  9. Gower, H. L., Cronin, D. S., and Plumtree, A. (2008). Ballistic impact response of laminated composite panels. International Journal of Impact Engineering, 35, 1000-1008. 

  10. Kogiso, N., Watson, L. T., Gurdal, Z., and Haftka, R. T. (1994). Genetic algorithms with local improvement for composite laminate design. Structural Optimization, 7, 207-218. 

  11. Lin, C. C. and Lee, Y. J. (2004). Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement. Composite Structures, 63, 339-345. 

  12. Livermore Software Technology Corporation. (2008). LS-DYNA Keyword User’s Manual. Livermore, CA: Livermore Software Technology Corporation. 

  13. Lopez-Puente, J., Zaera, R., and Navarro, C. (2008). Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates. Composites Part A: Applied Science and Manufacturing, 39, 374-387. 

  14. Naik, N. K. and Shrirao, P. (2004). Composite structures under ballistic impact. Composite Structures, 66, 579-590. 

  15. Park, I. J., Jung, S. N., Kim, D. H., and Yun, C. Y. (2009). General purpose cross-section analysis program for composite rotor blades. International Journal of Aeronautical and Space Sicences, 10, 77-85. 

  16. Soremekun, G., Gurdal, Z., Haftka, R. T., and Watson, L. T. (2001). Composite laminate design optimization by genetic algorithm with generalized elitist selection. Computers and Structures, 79, 131-143. 

  17. Stander, N., Roux, W., Goel, T., Eggleston, T., and Craig, K. (2008). LS-OPT User’s Manual. Livermore, CA: Livermore Software Technology Corporation. 

  18. Talebi, H., Wong, S. V., and Hamouda, A. M. S. (2009). Finite element evaluation of projectile nose angle effects in ballistic perforation of high strength fabric. Composite Structures, 87, 314-320. 

  19. Van Hoof, J. (1999). Modelling of Impact Induced Delamination in Composite Materials. PhD Thesis, Carleton University. 

  20. Walker, M. and Smith, R. E. (2003). A technique for the multiobjective optimisation of laminated composite structures using genetic algorithms and finite element analysis. Composite Structures, 62, 123-128. 

  21. Will, M. A., Franz, T., and Nurick, G. N. (2002). The effect of laminate stacking sequence of CFRP filament wound tubes subjected to projectile impact. Composite Structures, 58, 259-270. 

  22. Yong, M., Falzon, B. G., and Iannucci, L. (2008). On the application of genetic algorithms for optimising composites against impact loading. International Journal of Impact Engineering, 35, 1293-1302. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로