$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

기후학적 물수지를 적용한 기후변화에 따른 농업기상지표 변동예측의 불확실성
Uncertainty Characteristics in Future Prediction of Agrometeorological Indicators using a Climatic Water Budget Approach 원문보기

한국농공학회논문집 = Journal of the Korean Society of Agricultural Engineers, v.57 no.2, 2015년, pp.1 - 13  

남원호 (National Drought Mitigation Center, School of Natural Resources, University of Nebraska-Lincoln) ,  홍은미 (USDA-ARS Environmental Microbial & Food Safety Laboratory, Beltsville Agricultural Research Center) ,  최진용 (Department of Rural Systems Engineering and Research Institute for Agriculture & Life Sciences, Seoul National University) ,  조재필 (Climate Research Department, APEC Climate Center)

Abstract AI-Helper 아이콘AI-Helper

The Coupled Model Intercomparison Project Phase 5 (CMIP5), coordinated by the World Climate Research Programme in support of the Intergovernmental Panel on Climate Change (IPCC) AR5, is the most recent, provides projections of future climate change using various global climate models under four majo...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 기후변화 영향 및 적응평가 연구를 수행하기 위한 사전 연구로써 기후변화에 따른 농업기상학적 예측을 위한 불확실성을 정량적으로 평가하고자 한다. 기후변화 시나리오 선정을 위하여 9 개 기후 모델과 미래 대표농도경로 시나리오를 활용하여 73개 기상관측소를 대상으로 기후인자 (최대/최소기온, 강수량) 및 기준증발산량, 기후학적 물수지를 활용한 습윤인자 등 농업기상지표 (agrometeorological indicators)에 대한 기후 모델별, 시나리오별, 미래 기간별 변화를 산정하였다.
  • 본 연구에서는 기후변화에 따른 농업기상학적 예측을 위한 불확실성을 평가하기 위하여 9 개 기후 모델 (CanESM2, GFDL-ESM2G, GFDL-ESM2M, HadGEM2-CC, INM-CM4, IPSL-CM5A-LR, MIROC-ESM, MIROC-ESM-CHEM, MRI-CGCM3 모델) 및 미래 대표농도경로 시나리오 (RCP 4.5, RCP 8.5)를 대상으로 기후인자 (최대/최소기온, 강수량) 및 기준증발산량, 기후학적 물수지를 활용한 습윤인자 등 농업기상지표에 대한 기후 모델별, 시나리오별, 미래 기간별 변화를 정량적으로 비교하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
기후변화 영향평가 과정의 단계별 불확실성 주요 원인은 무엇인가? , 2013). 또한 기후변화 영향평가 과정에서 발생되는 불확실성 중 주요 원인은 기후변화 시나리오 선택에 의한 불확실성으로 제시된 바있다 (Harding et al., 2012; Lee and Kim, 2012; Madsen et al.
IPCC의 제 5차 기후변화 평가보고서는 무엇을 기반으로 작성되었나? 기후변화에 관한 정부간 협의체 (Intergovernmental Panel on Climate Change, IPCC)의 제 5 차 기후변화 평가보고서(the Fifth Assessment Report, AR5)는 2007년에서 2011년까지 실시된 5 단계 결합모델 상호비교 프로젝트 (the phase five of the Coupled Model Intercomparison Project, CMIP5)를 통해 신 온실가스 배출 시나리오를 기반으로 작성되었다. 전 지구 기후변화 시나리오 산출을 위한 국제사업인 CMIP5 사업은 전 세계 23개 기후 연구 그룹이 참여하고 50 개 이상의 기후모델을 이용하여 온실가스의 대표농도경로 (Representative Concentration Pathways, RCP) 시나리오 기반의 기후전망자료를 제공하고 있다 (Cho, 2013; Hwang, 2014a).
기후변화 불확실성에 대한 선행 연구는 어떤 요소들을 중심으로 진행되었는가? 기후변화 불확실성에 대한 선행 연구는 미래 온실 가스 배출 시나리오 예측의 부정확성, 저해상도 기후모델 결과의 시공간적인 편의를 보정하는 방법에 따른 오차, 적용 모형의 선정과 매개변수 보정에 따른 오차 등 기후변화 영향평가 과정의 단계별 불확실성 요소에 관한 연구가 진행되었다 (Raje and Mujumdar, 2010; Bae et al., 2011; Hwang and Kang, 2013; No et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (36)

  1. Bae, D.H., I.W. Jung, B.J. Lee, and M.H. Lee, 2011. Future Korean water resources projection considering uncertainty of GCMs and hydrological models. Journal of the Korean Water Resources Association 44(5): 389-406 (in Korean). 

  2. Cho, J.P., 2013. Impact assessment of climate change for agricultural reservoirs considering uncertainty. Research Report, APEC climate Center, Busan, Republic of Korea (in Korean). 

  3. Chung, S.O., and T. Nkomozepi, 2012. Uncertainty of paddy irrigation requirement estimated from climate change projections in the Geumho river basin, Korea. Paddy Water Environment 10: 175-185. 

  4. Collins, M., B.B.B. Booth, G.R. Harris, J.M. Murphy, D.M.H. Sexton, and M.J. Webb, 2006. Towards quantifying uncertainty in transient climate change. Climate Dynamics 27: 127-147. 

  5. Collins, M., R.E. Chandler, P.M. Cox, J.M. Huthnance, J. Rougier, and D.B. Stephenson, 2012. Quantifying future climate change. Nature Climate Change 25: 403-409. 

  6. Elguindi, N., A. Grundstein, S. Bernardes, U. Turuncoglu, and J. Feddema, 2014. Assessment of CMIP5 global model simulations and climate change projections for the 21st century using a modified Thornthwaite climate classification. Climatic Change 122: 523-538. 

  7. Feddema, J.J., 2005. A revised thornthwaite-type global climate classification. Physical Geography 26(6): 442-466. 

  8. Garcia-Garizabal, I., J. Causape, R. Abrahao, and D. Merchan, 2014. Impact of climate change on mediterranean irrigation demand: historical dynamics of climate and future projections. Water Resources Management 28: 1449-1462. 

  9. Gober, P., C.W. Kirkwood, R.C. Balling Jr., A.W. Ellis, and S. Deitrick, 2010. Water planning under climatic uncertainty in Phoenix: why we need a new paradigm. Annals of the Association of American Geographers 100(2): 356-372. 

  10. Greve, P., B. Orlowsky, B. Mueller, J. Sheffield, M. Reichstein, and S.I. Seneviratne, 2014. Global assessment of trends in wetting and drying over land. Nature Geoscience 7: 716-721. 

  11. Harding, B.L., A.W. Wood, and J.R. Prairie, 2012. The implications of climate change scenario selection for future streamflow projection in the upper Colorado river basin. Hydrology and Earth System Sciences 16: 3989-4007. 

  12. Hong, E.M., J.Y. Choi, S.H. Lee, S.H. Yoo, and M.S. Kang, 2009. Estimation of paddy rice evapotranspiration considering climate change using LARS-WG. Journal of the Korean Society of Agricultural Engineers 51(3): 25-35 (in Korean). 

  13. Hwang, S.W., and M.S. Kang, 2013. Uncertainty of climate change impact assessment methodology and process. Magazine of the Korean Society of Agricultural Engineers 55(1): 30-39 (in Korean). 

  14. Hwang, S.W., Y.G. Her, and S.W. Chang, 2013. Uncertainty in regional climate change impact assessment using bias-correction technique for future climate scenarios. Journal of the Korean Society of Agricultural Engineers 55(4): 95-106 (in Korean). 

  15. Hwang, S.W., 2014a. Summary and comparison of the climate change predictions of IPCC climate change scenarios and assessment report. Magazine of the Korean Society of Agricultural Engineers 56(2): 26-32 (in Korean). 

  16. Hwang, S.W., 2014b. Assessing the performance of CMIP5 GCMs for various climatic elements and indicators over the Southeast US. Journal of the Korean Water Resources Association 47(11): 1039-1050 (in Korean). 

  17. Lee, J.K., and Y.O. Kim, 2010. A study on selection of standard scenarios in Korea for climate change. Climate Change Research 1(1): 59-73 (in Korean). 

  18. Lee, J.K., and Y.O. Kim, 2012. Selecting climate change scenarios reflecting uncertainties. Atmosphere. Korean Meteorological Society 22(2): 149-161 (in Korean). 

  19. Madsen, M.S., C.F. Maule, N. MacKellar, J.E. Olesen, and J.H. Christensen, 2012. Selection of climate change scenario data for impact modelling. Food Additives & Contaminants: Part A 29(10): 1502-1513. 

  20. Moon, H.J., B.H. Kim, H.E. Oh, J.Y. Lee, and K.J. Ha, 2014. Future change using the CMIP5 MME and best models: I. near and long term future change of temperature and precipitation over East Aisa. Atmosphere. Korean Meteorological Society 24(3): 403-417 (in Korean). 

  21. Moon, J.W., C.G. Jung, and D.R. Lee, 2013. Parameter regionalization of hargreaves equation based on climatological characteristics in Korea. Journal of the Korean Water Resources Association 46(9): 933-946 (in Korean). 

  22. Murdock, T.Q., and D.L. Spittlehouse, 2011. Selecting and using climate change scenarios for British Columbia. Pacific Climate Impacts Consortium, University of Victoria, Victoria, BC. 

  23. Nam, W.H., E.M. Hong, and J.Y. Choi, 2014a. Uncertainty of water supply in agricultural reservoirs considering the climate change. Journal of the Korean Society of Agricultural Engineers 56(2): 11-23 (in Korean). 

  24. Nam, W.H., E.M. Hong, T.G. Kim, and J.Y. Choi, 2014b. Projection of future water supply sustainability in agricultural reservoirs under RCP climate change scenarios. Journal of the Korean Society of Agricultural Engineers 56(4): 59-68 (in Korean). 

  25. Nam, W.H., E.M. Hong, M.W. Jang, and J.Y. Choi, 2014c. Projection of consumptive use and irrigation water for major upland crops using soil moisture model under climate change. Journal of the Korean Society of Agricultural Engineers 56(5):77-87 (in Korean). 

  26. Nam, W.H., E.M. Hong, and J.Y. Choi, 2015. Has climate change already affected the spatial distribution and temporal trends of reference evaptranspiration in South Korea?. Agricultural Water Management 150: 129-138. 

  27. Nkomozepi, T., and S.O. Chung, 2014. Uncertainty of hydro-meteorological predictions due to climate change in the Republic of Korea. Journal of the Korean Water Resources Association 47(3): 257-267. 

  28. No, S.H., K.S. Jung, J.H. Park, and K.S. Ryoo, 2013. Water supply change outlook for Geum river basin considering RCP climate change scenario. Journal of the Korean Water Resources Association 46(5): 505-517 (in Korean). 

  29. Oh, S.G., and M.S. Suh, 2013. Projection of fine-scale climate changes over South Korea based on the RCP (2.6, 4.5, 6.0, 8.5) scenarios using RegCM4. Journal of Climate Research 8(4):291-307 (in Korean). 

  30. Raje, D., and P.P. Mujumdar, 2010. Reservoir performance under uncertainty in hydrologic impacts of climate change. Advances in Water Resources 33: 312-326. 

  31. Rowland, E.R., M.S. Cross, and H. Hartmann, 2014. Considering multiple futures: scenario planning to address uncertainty in natural resource conservation. Washington, DC, US Fish and Wildlife Service. 

  32. Shin, S.C., M.H. Hwang, and I.H. Ko, 2008. Development of a monitoring technique of dryness and wetness in watershed using climatic water budget. Journal of the Korean Water Resources Association 41(2): 173-184 (in Korean). 

  33. Snover, A.K., N.J. Mantua, J.S. Littell, M.A. Alexander, M.M. Mcclure, and J. Nye, 2013. Choosing and using climate-change scenarios for ecological-impact assessments and conservation decisions. Conservation Biology 27: 1147-1157. 

  34. Sung, J.H., H.S. Kang, S.H. Park, C.H. Cho, D.H. Bae, and Y.O. Kim, 2012. Projection of extreme precipitation at the end of 21st century over South Korea based Representative Concentration Pathways (RCP). Atmosphere. Korean Meteorological Society 22(2): 221-231 (in Korean). 

  35. Thornthwaite, C.W., 1948. Approach toward a rational classification of climate. Geographical Review 38: 55-94. 

  36. Willmott, C.J., and J.J. Feddema. 1992. A more rational climatic moisture index. The Professional Geographer 44(1):84-88. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로