$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

온실가스 증가로 인한 기후변화는 농업 생태계에 다양한 경로로 영향을 미쳐 작물 생산에 영향을 미칠 수 있다. 또한, 농업 생태계는 생물, 기후, 토양 및 경제 환경이 서로 복잡하게 연결되어 있어 개별 분야에 초점을 맞춘 적응 대책들은 농업 부문 내 다른 영역에 의도하지 않은 파급 효과를 초래할 수 있다. 기후변화 조건에서 복잡한 농업 생태계의 상호작용을 고려하면서 최적의 작물 생산성을 유지하기 위해 개별분야별 모델을 연계한 통합 예측 시스템 구축이 요구된다. 이러한 통합시스템을 구축하기 위해서는 단계적 접근이 필요하다. 국내에서 사용되고 있는 모델들은 통합시스템에 적합하도록 설계된 것이 아니기 때문에, 이를 위한 모델의 재개발이 필요하다. 농업생태계 감시를 위한 수퍼사이트와 위성사이트의 구축을 통해 장기간 작물 생육 자료를 확보하고 이를 개별 분야 모델의 개선에 활용할 수 있다. 모델 대상의 추상화와 상속과정을 통해 보다 유연한 형태의 통합 모델모듈 개발이 가능할 것이다. 마지막으로, 농업분야는 사회경제적인 요인에 지대한 영향을 받기 때문에, 농업생산과 경제분야가 연계될 수 있는 통합 시스템 구축이 바람직 할 것 이다.

Abstract AI-Helper 아이콘AI-Helper

Climate change caused by elevated greenhouse gases would affect crop production through different pathways in agricultural ecosystems. Because an agricultural ecosystem has complex interactions between societal and economical environment as well as organisms, climate, and soil, adaptation measures i...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
오존 농도가 증가가 작물의 생산성에 영향을 줄수 있다는 예시는 무엇인가? 또한, 온실가스 증가와 함께 오존 농도가 증가하여 작물의 생산성을 감소시킬 수있다(IPCC 2014). 예를 들어, Ainsworth(2008)는 대기중 오존 농도가 62ppb일 때 벼의 생산량이 14% 감소하였다고 보고하였다.
미래의 작물 생산성 변화를 예측하기 위해 무엇을 고려되어 왔는가? 미래의 작물 생산성 변화를 예측하기 위해 온실가스농도 및 기온의 변화뿐 만 아니라 기후변화 적응을 위한 작물 재배 관리까지 고려되어 왔다(Lobell et al., 2008; Smit and Skinner, 2002).
온실가스 증가는 무엇에 영향을 미치는가? CO2, N2O, 및 CH4를 포함하는 온실가스 증가로 인한 기후변화는 생물리학적인 요인에 의해 작물 생산에 영향을 미칠 수 있다(Tubiello et al. 2002).
질의응답 정보가 도움이 되었나요?

참고문헌 (54)

  1. Ainsworth, E. A., 2008: Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biology 14(7), 1642-1650. 

  2. Asseng S., F. Ewert, C. Rosenzweig, J. W. Jones, J. L. Hatfield, A. C. Ruane, K. J. Boote, P. J. Thorburn, R. P. Rtter, D. Cammarano, N. Brisson, B. Basso, P. Martre, P. K. Aggarwal, C. Angulo, P. Bertuzzi, C. Biernath, A. J. Challinor, J. Doltra, S. Gayler, R. Goldberg, R. Grant, L. Heng, J. Hooker, L. A. Hunt, J. Ingwersen, R. C. Izaurralde, K. C. Kersebaum, C. Mller, S. Naresh Kumar, C. Nendel, G. O'Leary, J. E. Olesen, T. M. Osborne, T. Palosuo, E. Priesack, D. Dipoche, M. A. Semenov, I. Shcherbak, P. Steduto, C. Stckle, P. Stratonovitch, T. Streck, I. Supit, F. Tao, M. Travasso, K. Waha, D. Wallach, J. W. White, J. R. Williams, and J. Wolf, 2013: Uncertainty in simulating wheat yields under climate change. Nature Climate Change 3, 827-832. 

  3. Asseng, S., P. D. Jamieson, B. Kimball, P. Pinter, K. Sayre, J. W. Bowden, and S. M. Howden, 2004: Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric $CO_2$ . Field Crops Research 85(2-3), 85-102. 

  4. Bouman, B. A. M, M. J. Kropff, T. P. Tuong, M. C. S. Wopereis, H. F. M. ten Berge, H. H. van Laar, 2001: ORYZA2000 : modeling lowland rice (1st ed.). International Rice Research Institute and Wageningen University and Research Centre, 235pp. 

  5. Brisson, N., B. Mary, D. Ripoche, M. H. Jeuffroy, F. Ruget, B. Nicoullaud, P. Gate, F. Devienne-Barret, R. Antonioletti, C. Durr, G. Richard, N. Beaudoin, S. Recous, X. Tayot, D. Plenet, P. Cellier, J. M. Machet, J. M. Meynard, and R. Delecolle, 1998: STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 18(5-6), 311-346. 

  6. Chung, S. O., 2010: Simulating evapotranspiration and yield response of rice to climate change using FAO-AquaCrop. Journal of the Korean Sciety of Agricultural Engineers 52(3), 57-64. (in Korean with English abstract) 

  7. Cui, R. X., and B.W. Lee, 2002: Spikelet number estimation model using nitrogen nutrition status and biomass at panicle initiation and heading stage of rice. Korean Journal of Crop Science 47(5), 390-394. 

  8. Elliott, J., D. Kelly, N. Best, M. Wilde, M. Glotter, and I. Foster, 2013: The parallel system for integrating impact models and sectors (pSIMS). Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery (XSEDE '13) 21, 1-8. 

  9. FAO Land and Water Development Division, 1996: Agro-Ecological Zoning Guidelines. Food and Agriculture Organization of the United Nations. 

  10. Fischer, G., M. Shah, F. N. Tubiello, and H. V. Velhuizen, 2005: Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080. Philosophical Transactions of the Royal Society B 360(1463), 2067-2083. 

  11. Glotter, M., J. Elliott, D. McInerney, N. Best, I. Foster, and E. J. Moyer, 2014: Evaluating the utility of dynamical downscaling in agricultural impacts projections. Proceedings of the National Academy of Sciences of the United States of America 111(14), 8776-8781. 

  12. Gruber, T. R., 1993. A translation approach to portable ontology specifications. Knowledge Acquistion 5(2), 199-220. 

  13. Howden, S. M., J. F. Soussana, F. N. Tubiello, N. Chhetri, M. Dunlop, and H. Meinke, 2007: Adapting agriculture to climate change. Proceedings of the National Academy of Sciences of the United States of America 140(50), 19691-19696. 

  14. Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. C. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, 2003: The DSSAT cropping system model. European Journal of Agronomy 18(3-4), 235-265. 

  15. Keating, B. A., R. S. Carberry, G. L. Hammer, M. E. Probert, M. J. Robertson, D. Holzworth, N. I. Huth, J. N. G. Hargreaves, H. Meinke, Z. Hochman, G. McLean, K. Verburg, V. Snow, J. P. Dimes, M. Silburn, E. Wang, S. Brown, K. L. Bristow, S. Asseng, S. Chapman, R. L. McCown, D. M. Freebairn, and C. J. Smith, 2003: An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18(3-4), 267-288. 

  16. Kim, D. J., J. H. Roh, J. G. Kim, and J. I. Yun, 2013: The Influence of shifting planting date on cereal grains production under the projected climate change. Korean Journal of Agricultural and Forest Meteorology 15(1), 26-39. (in Korean with English abstract) 

  17. Kim, D. J., S. O. Kim, K. H. Moon, and J. I. Yun, 2012: An outlook on cereal grains production in South Korea based on crop growth simulation under the RCP8.5 climate condition. Korean Journal of Agricultural and Forest Meteorology 14(3), 132-141. (in Korean with English abstract) 

  18. Ku, B. I., M. K. Choi, S. K. Kang, T. S. Park, Y. D. Kim, H. K. Park, J. K. Ko, and B. W. Lee, 2011: Growth and yield in early seasonal cultivation for rice double cropping in Southern Korean Paddy Field. The Journal of the Korean Society of International Agriculture 23(5), 520-530. (in Korean with English abstract) 

  19. Leclre D., P. A. Jayet, N. de Noblet-Ducoudr, 2013: Farmlevel autonomous adaptation of European agricultural supply to climate change. Ecological Economics 87, 1-14. 

  20. Lee, B. W., J. C. Shin, and J. H. Bong, 1991: Impact of climate change induced by the increasing atmospheric CO2 concentration on agroclimatic resources, net primary productivity and rice yield potential in Korea. Korean Journal of Crop Science 36(2), 112-126. (in Korean with English abstract) 

  21. Lee, C. K., J. Kim, J. Shon, W. Yang, Y. H. Yoon, K. J. Choi, and K. S. Kim, 2012: Impacts of climate change on rice production and adaptation method in Korea as evaluated by simulation study. Korean Journal of Agricultural and Forest Meteorology 14(4), 207-221. (in Korean with English abstract) 

  22. Lee, C. Y., Y. C. Kim, H. C. Park, S. M. Kim, I. S. Choi, 1999: Effects of elevated CO2 concentration on photosynthesis, transpiration, stomatal conductance and intercellular CO2 concentration of barley. Journal of Agricultural technology and Development Institute 3(2), 37-41. (in Korean with English abstract) 

  23. Lee, J. T., K. M. Shim, H. S. Bang, M. H. Kim, K. K. Kang, Y. E. Na, M. S. Han, and D. B. Lee, 2010: An analysis of changes in rice growth and growth period using climatic tables of 1960s (1931-1960) and 2000s (1971-2000). Journal of Korean Society of Soil Science and Fertilizer 43(6), 1018-1023. (in Korean with English abstract) 

  24. Lobell, D. B., B. B. Marshall, C. Tebaldi, M. D. Mastrandrea, W. P. Falcon, and R. L. Naylor, 2008: Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607-610. 

  25. Long S. P., E. A. Ainsworth, A. D. B. Leakey, J. Nosberger, and D. R. Ort, 2006: Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentration. Science 312, 1918-1921. 

  26. Majda A. J. and B. Gershgorin, 2011: Improving model fidelity and sensitivity for complex systems through empirical information theory. Proceedings of the National Academy of Sciences of the United States of America 108(25), 10044-10049. 

  27. Matsui T., O. S. Namuco, L. H. Ziska, and T. Horie, 1997: Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crop Research 51, 213-219. 

  28. Matthews, R. B., M. J. Kropff, T. Horie, D. Bachelet, 1997: Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation. Agricultural Systems 54, 399-425. 

  29. Nguyen, D. N. K. J. Lee, D. I. Kim, A. T. Nguyen, B. W. Lee, 2014: Modeling and validation of high-temperature induced spikelet sterility in rice. Field Crops Research 156, 293-302. 

  30. O, S. N., 2005: Effects of climate change on rice economic risk assessment using $CO_2$ doubling scenarios. Journal of the Korean Meteorology Society 41, 507-517. 

  31. Olesen J. E., M. Trnka, K. C. Kersebaum, A. O. Skjelvg, B. Seguin, P. Peltonen-Sainio, F. Rossi, J. Kozyra, and F. Micale, 2011: Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy 34(2), 96-112. 

  32. Parry, M. L., C. Rosenzweig, A. Iglesias, M. Livermore, and G. Fischer, 2004: Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change 14(1), 53-67. 

  33. Peng, S., J. Huang, J. E. Sheehy, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeno, G. S. Khush, and K. G. Cassman, 2004: Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America 101(27), 9971-9975. 

  34. Rosenzweig C., J. Elliott, D. Deryng, A. C. Ruange, C. Mller, A. Arneth, K. J. Boote, C. Folberth, M. Glotter, N. Khabarov, K. Neumann, F. Piontek, T. A. M. Pugh, E. Schmid, E. Stehfest, H. Yang, and J. W. Jones, 2013: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America 111(9), 1-6. 

  35. Rosenzweig C., J. W. Jones, J. L. Hatfield, A. C. Ruane, K. J. Boote, P. Thorburn, J. M. Antle, G. C. Nelson, C. Porter, S. Janssen, S. Asseng, B. Basso, F. Ewert, D. Wallach, G. Baigorria, J., and M. Winter, 2013: The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies. Agricultural and Forest and Meteorology 170, 166-182. 

  36. Rosenzweig, C. and M. L. Parry, 1994: Potential impact of climate change on world food supply. Nature 367, 133-138. 

  37. Schmidhuber J. and F. N. Tubiello, 2007: Global food security under climate change. Proceedings of the National Academy of Sciences of the United States of America 104(50), 19703-19708. 

  38. Seo, H. C., S. K. Kim, Y. S. Lee, and Y. C. Cho, 2006: Geographical shift of quality soybean production area in northern Gyeonggi Province by year 2100. Korean Journal of Agricultural and Forest Meteorology 8(4), 242-249. (in Korean with English abstract) 

  39. Seo, Y. H., A. S. Lee, B. O. Cho, A. S. Kang, B. C. Jeong, and Y. S. Jung, 2010: Research Notes: Adaptation study of rice cultivation in Gangwon Province to climate change. Korean Journal of Agricultural and Forest Meteorology 12(2), 143-151. (in Korean with English abstract) 

  40. Shim, K. M., K. A. Roh, K. H. So, G. Y. Kim, H. C. Jeong, and D. B. Lee, 2010: Assessing impacts of global warming on rice growth and production in Korea. Climate Change Research 1(2), 121-131. (in Korean with English abstract) 

  41. Shim, K. M., S. H. Min, D. B. Lee, G. Y. Kim, H. C. Jeong, S. B. Lee, and K. K. Kang, 2011: Simulation of the effects of the A1B climate change scenario on the potential yield of winter naked barley in Korea. Korean Journal of Agricultural and Forest Meteorology 13(4), 192-203. (in Korean with English abstract) 

  42. Shim, K. M., S. H. Yun, Y. S. Jung, J. T. Lee, and K. H. Hwang, 2002: Impact of recent weather variation on yield components and growth stages of winter barley in Korea. Korean Journal of Agricultural and Forest Meteorology 4(1), 38-48. (in Korean with English abstract) 

  43. Shim, K. M., Y. S. Lee, Y. K. Shin, K. Y. Kim, and J. T. Lee, 2005: Changes in simulated rice yields under GCM 2 x $CO_2$ climate change scenarios. Proceedings of the Korean Society of Crop Science Conference 45(2), 12-27. (in Korean with English abstract) 

  44. Shin, J. C., C. G. Lee, Y. H. Yoon, and Y. S. Kang, 2000: Impact of climate variability and change on crop productivity. Proceedings of the Korean Society of Crop Science Conference 45(2), 12-27. (in Korean with English abstract) 

  45. Smit, B., and M. W. Skinner, 2002: Adaptation options in agriculture to climate change: a typology. Mitigation and Adaptation Strategies for Global Change 7(1), 85-144. 

  46. Stockle, C. O., S. A. Martin, and G. S. Campbell, 1994: CropSyst, a Cropping systems simulation mocel: water/nitrogen budgets and crop yield. Agricultural Systems 46(3), 335-359. 

  47. Thorp, K. R., J. W. White, C. H. Porter, G. Hoogenboom, G. S. Nearing, and A. N. French, 2012: Methodology to evaluate the performance of simulation models for alternative compiler and operating system configurations. Computers and Electronics in Agriculture 81, 62-71. 

  48. Tubiello, F. N., C. Rosenzweig, R. A. Goldberg, S. Jagtap, and J. W. Jones, 2002: Effects of climate change on US crop production: simulation results using two different GCM scenarios. Part I: Wheat, potato, maize, and citrus. Climate Research 20(3), 259-270. 

  49. Tubiello, F. N., M. Donatelli, C. Rosenzweig, and C. O. Stockle, 2000: Effects of climate change and elevated $CO_2$ on cropping systems: model predictions at two Italian locations. European Journal of Agronomy 13(2-3), 179-189. 

  50. Vidal J. P., and S. D. Wade, 2008: Multimodel projections of catchment-scale precipitation regime. Journal of Hydrology 353(1-2), 143-158. 

  51. White, J. W., G. Hoogenboom, B. A. Kimball, and G. W. Wall, 2011: Methodologies for simulating impacts of climate change on crop production. Field Crops Research 124(3), 357-368. 

  52. Williams, J. R., 1990: The erosion-productivity impact calculator (EPIC) model: a case history. Philosophical Transactions: Biological Sciences 329(1255), 421-428. 

  53. Yoo, G. Y., and J. E. Kim, 2007: Development of a methodology assessing rice production vulnerabilities to climate change. KEI/RE-14, Korea Environment Institute, Seoul, 84pp. 

  54. Yun, J. I., 1990: Analysis of the climate impact on Korean rice production under the carbon dioxide scenario. Asia-Pacific Journal of Atmospheric Sciences 26(4), 263-274. (in Korean with English abstract) 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로