$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 비용절감 측면에서 클라우드, 빅데이터 서비스를 위한 대용량 데이터 처리 아키텍쳐
Data Processing Architecture for Cloud and Big Data Services in Terms of Cost Saving 원문보기

한국콘텐츠학회논문지 = The Journal of the Korea Contents Association, v.15 no.5, 2015년, pp.570 - 581  

이병엽 (배재대학교 전자상거래학과) ,  박재열 (충북대학교 정보통신공학과) ,  유재수 (충북대학교 정보통신공학과)

초록
AI-Helper 아이콘AI-Helper

최근 많은 기관들로부터 클라우드 서비스, 빅 데이터가 향후 대세적인 IT 트렌드 및 확고한 기술로서 예견되고 있다. 또한 현재 IT를 선도하는 많은 벤더를 중심으로 클라우드, 빅데이터에 대한 실질적인 솔루션과 서비스를 제공하고 있다. 이러한 기술들은 기업의 비용절감 측면에서, 클라우드는 인터넷 기반의 다양한 기술들을 기반으로 비즈니스 모델에 대한 자원의 사용을 자유스럽게 선택할 수 있는 장점을 가지고 있어 능동적인 자원 확장을 위한 프로비져닝 기술과 가상화 기술들이 주요한 기술로 주목 받고 있다. 또한 빅데이터는 그동안 분석하지 못했던 새로운 비정형 데이터들에 대한 분석 환경을 제공함으로서 데이터 예측모델의 차원을 한층 높이고 있다. 하지만 클라우드 서비스, 빅데이터의 공통점은 대용량 데이터를 기반으로 서비스 또는 분석을 요하고 있어, 초기 발전 모델부터 대용량 데이터의 효율적인 운영 및 설계가 중요하게 대두 되고 있다. 따라서 본 논문에 클라우드, 빅데이터 서비스를 위한 대용량 데이터 기술 요건들을 토대로 데이터 처리 아키텍처를 정립하고자 한다. 특히, 클라우드 컴퓨팅을 위해 분산 파일 시스템이 갖추어야 할 사항들과 클라우드 컴퓨팅에서 활용 가능한 오픈소스 기반의 하둡 분산 파일 시스템, 메모리 데이터베이스 기술요건을 소개하고, 빅데이터, 클라우드의 대용량 데이터를 비용절감 측면에서 효율적인 압축기술 요건들을 제시한다.

Abstract AI-Helper 아이콘AI-Helper

In recent years, many institutions predict that cloud services and big data will be popular IT trends in the near future. A number of leading IT vendors are focusing on practical solutions and services for cloud and big data. In addition, cloud has the advantage of unrestricted in selecting resource...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 그래서 기업들은 비용을 절감하고 합리적이고 효율적인 방안을 찾고 있다. 따라서 본 논문에서는 점진적인 클라우드의 모델을 제시하고, 더불어 비용 절감의 측면에서 대용량의 데이터 클라우드 서비스를 위한 데이터 압축 방안들에 대한 제시를 하고자 한다.
  • 본 논문의 목적은 최근 IT 메가트렌드로 이슈화가 되고 있는 클라우드 서비스와 빅데이터 구축을 위한 기술적인 측면에서의 대용량 데이터의 비용절감과 서비스성능의 극대화를 위한 파일시스템 및 효율적인 데이터의 운용 및 관리를 위한 기술요건들을 정리하여 제언하였다.
  • 또한 데이터의 양이 증가하더라도 애플리케이션의 확장성 및 성능은 지속적으로 비즈니스 요구 사항을 충족시켜야 한다. 따라서 본 논문에서는 클라우드와 빅데이터의 대용량 데이터를 기술적인 관점에서 어떠한 압축 기술 요건들을 통해 효율적으로 데이터를 관리하고, 비용 절감의 효과를 기대 할 수 있는지에 대해 정리 하고자 한다.
  • 데이터의 트랜잭션의 성능을 높이기 위해 고려가 되고 있는 최근의 동향으로, 데이터베이스 서버를 미들티어, 즉 메모리상에 올려놓고 트랜잭션을 처리함으로 Disk I/O에 대한 비용을 줄이고 메모리 I/O를 통해 처리토록 하는 방안으로 고려가 되고 있는 영역이 메모리 DBMS이다. 메모리 데이터베이스는 Disk 기반으로 트랜잭션을 처리할 때 발생되는 Disk I/O 부분을 메모리상에 데이터베이스를 둠으로 해서 I/O극대화로 성능 문제를 해결하고자 하는 것이다. 주로 Scale-up을 위해 고려되는 솔루션이며, Disk기반의 DBMS와 비교를 해 볼 때 나름대로의 장단점이 있다고 볼 수 있다.
  • 주로 Scale-up을 위해 고려되는 솔루션이며, Disk기반의 DBMS와 비교를 해 볼 때 나름대로의 장단점이 있다고 볼 수 있다. 따라서 클라우드 컴퓨팅 분산 파일시스템의 극대화를 위해 메모리 데이터베이스의 활용에 대한 기술을 구성하고자 한다.
  • 또한 시스템, 스토리지, 어플리케이션, 데이터베이스의 수직적, 수평적 노드의 확장에 있어서 가장 유연한 기술 구조가 그리드 기술 이다. 따라서 본 논문에서는 그리드 기술구조를 기반으로 한 고가용성 아키텍처를 최상의 클라우드 서비스를 위한 소프트웨어 기술요건으로 제시하고자 한다. 데이터 소스로부터 읽혀온 데이터를 여러 미들티어 서버의 메모리상에 캐시 형태로 상주 시키면서, 어떤 노드를 통해 데이터를 요구하더라고 그리드로 연결된 노드상의 메모리에서 데이터를 찾아 빠르게 서비스하는 구조로 제언 될 수 있다.
  • 예를 들면 시큐어 플랫폼 기술, 고가용성 인프라 기술, 네트워크 및 스토리지 가상화 기술, 모바일 클라우드 분야에서는 아직도 가능한 여러 가지 클라우드 서비스 분야들이 존재하고 있다. 본 논문에서는 클라우드컴퓨팅과 빅데이터의 효율적인 데이터 관리를 위한 다양한 각도에서 기술적인 제안을 하였고, 클라우드, 빅데이터와 관련된 파일시스템들의 동향을 통해 최근 급격하게 성장하고 있는 대용량 데이터의 관리 기술 및 저장의 메커니즘을 이해하고 불특정 다수의 클라우드 서비스의 모델에 따른 데이터의 성능과 안정성을 보장해주기 위한 분산파일 시스템이 갖추어야 할 사항들을 살펴보았다. 또한 특징적으로 비정형 데이터의 처리를 위한 하둡 분산파일 시스템과, 메모리 데이터를 통한 시스템 퍼포먼스 향상 등을 조합한 새로운 데이터 아키텍처를 제시 하였다.
  • 최근 다양한 해외 벤더들은 이러한 클라우드 서비스의 안정적인 서비스 및 대용량의 데이터들을 처리 할 수 있는 오픈소스 기반의 데이터 분산처리 기술들을 선택하여 메모리데이터베이스 기반의 어플라이언스 제품들을 출시하기 시작 하였다. 본 논문은 클라우드, 빅데이터를 도입하는 또는 준비 중인 기업들이 기본적으로 갖추어야 하는 대용량 데이터의 관리 방안들, 파일시스템, 빅데이터의 기술요건, 클라우드의 기술요건, 대용량 데이터의 압축 기술요건들에 대해 세부적으로 제시를 하였다. 국내외의 안정적인 클라우드, 빅데이터 서비스를 준비하는 많은 기업들이 갖추어야 할 주요 대용량 파일시스템의 메커니즘을 이해하고 향후 빅데이터, 클라우드 컴퓨팅을 위한 효율적인 대용량 데이터 관리 및 활용 방안으로 활용하기를 기대한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
클라우드가 본격적인 비즈니스 모델로서 성장하기 위해서는 엔터프라이즈급 클라우드 서비스의 등장이 필수적이라고 보고 있는 것이 의미하는 것은? 이와 병행하여 이제는 클라우드 서비스가 개인용 서비스, 게임 산업, 테스트 및 개발자용 IaaS 중심의 비즈니스 모델에서 벗어나고자 노력하고 있다는 점을 주목할 필요가 있다. 클라우드 서비스 사업자의 입장에서 클라우드가 본격적인 비즈니스 모델로서 성장하기 위해서는 엔터프라이즈급 클라우드 서비스의 등장이 필수적인 것으로 보고 있으며, 이는 현재 기업에서 운용중인 업무가 클라우드에서도 그대로 운용 될 수 있는 수준의 성능, 안정성, 보안성관련 서비스 수준이 지켜 질 수 있어야 한다는 것과 기존의 업무가 그대로 옮겨갈 수 있는 이식성이 보장되어야 하는 것을 의미한다. 최근 클라우드 컴퓨팅 시장에 진출했거나 진출을 선언한 Google, IBM, Microsoft, Oracle 등과 같은 글로벌 IT 기업들은 그 동안의 하드웨어, 소프트웨어의 기술력을 바탕으로 클라우드 컴퓨팅을 제공하는 데 필요한 IT 인프라 및 소프트웨어의 서비스 형태를 지속적으로 확충해 나가고 있으며 제반 기술들을 개발하고 향상시키기 위해 막대한 개발 투자를 쏟아 붓고 있다[3].
클라우드 아키텍처의 점진적인 변화가 가진 단점은? 먼저 점진적인 변화를 살펴보면, 점진적인 변화를 구현하는 것은 현재 물리적인 데이터센터를 조금씩 가상화로 이전하는 것인데 이는 기존 자원을 효율적으로 사용해 비즈니스 변화에 대한 IT인프라가 좀 더 빠르게 반응 할 수 있도록 하고 종국적으로는 ITaaS로 이전해 가는 방법이다. 기존의 인프라를 활용할 수 있다는 측면에서 비용을 절감할 수 있다고 생각하기 쉽지만, 클라우드로 전환하는 과정에서도 기존 인프라에 대한 비용이 지속적으로 들어간다는 단점이 존재 한다. 반면 혁신적인 변화는 클라우드 기반으로 새로운 인프라를 구축하는 것이다.
클라우드 컴퓨팅이란 무엇인가? 클라우드 컴퓨팅이란 인터넷 기술을 활용하여 ‘가상화된 IT 자원을 서비스’로 제공하는 컴퓨팅으로, 사용자는 IT 자원(소프트웨어, 스토리지, 서버, 네트워크)을필요한 만큼 빌려서 사용하고, 서비스 부하에 따라서 실시간 확장성을 지원받으며, 사용한 만큼 비용을 지불하는 컴퓨팅을 말한다. [표 1]은 여러 기관에서 기술한 클라우드 컴퓨팅 정의이다[2][6-8].
질의응답 정보가 도움이 되었나요?

참고문헌 (13)

  1. 민옥기, 김학영, 남궁한, 클라우드 컴퓨팅 기술 동향, 전자통신동향 분석, 2009. 

  2. 이정아, 모바일클라우드 서비스 국내외 정책 추진 현황, KT경제경연 연구소, 2010. 

  3. 정제호, "클라우드 컴퓨팅의 현재와 미래, 그리고 시장 전략," http://www.software.or.kr, 2008년 10월. 

  4. 채승병, SERI경영노트, 제167호, 2012(10). 

  5. Adrian Johnson, "IDG Summary, Cloud & DataCenter World 2013, pp.1-5. 

  6. George Lawton, "Developing Software Online with Platform-as-a-Servic Technology," Computer, Vol.41, 2008(6). 

  7. http://hadoop.apache.org/core/docs 

  8. KIPA, SaaS 대표주자, Salesforce.com의 성장세 분석, 2007(11). 

  9. Oracle, Oracle Advanced Compression White Paper, 2012. 

  10. "Vision, Hype, and Reality for Delivering IT Services as Computing Utilities," HPCC 2008 Keynote, 2008. 

  11. http://hadoop.apache.org/ 

  12. http://ko.wikipedia.org/wiki/%EB%B9%85_%EB%8D%B0%EC%9D%B4%ED%84%B0 

  13. http://blog.cafe-latte.co.kr/ 

저자의 다른 논문 :

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로