$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

Graphite can be classified into natural graphite from mines and artificial graphite. Due to its outstanding properties such as light weight, thermal resistance, electrical conductivity, thermal conductivity, chemical stability, and high-temperature strength, artificial graphite is used across variou...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

대상 데이터

  • 1[5] shows the crystal lattice of a hexagonal graphite with an -ABAB- stacking sequence [6-8]. Graphite consists of rings of six carbon atoms, and the sp2 carbon atom of the hexagonal basal plane has three σ electrons in the same plane and one π electron in the perpendicular direction, giving it a bond strength of 524 kJ/mol. Weak van der Waal forces (7 kJ/mol) exist between basal planes [9-16].
본문요약 정보가 도움이 되었나요?

참고문헌 (83)

  1. Bohnet M. Carbon. In: Bohnet M, ed. Ullmann's Encyclopedia of Industrial Chemistry. 6th ed., Wiley-VCH, Weinheim, Germany, 281 (2003). 

  2. Kalyoncu RS. Graphite. In: U.S. Department of the Interior , U.S. Geological Survey, eds. US Geological Survey Minerals Yearbook, Vol. 1, Metals and Minerals, U.S. Geological Survey, Washington, DC (2000). 

  3. Lee CZ, Ryu CR, Cho JO. The international comparative study on the origin of the terms of mineral and rock. J Korean Earth Sci Soci, 32, 306. http://dx.doi.org/10.5467/JKESS.2011.32.3.306. 

  4. Tamashausky AV. Graphite: a multifunctional additive for paint and coatings (2003). Available from: http://asbury.com/pdf/CoatingsPaper.pdf. 

  5. Pierson HO. Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications, Noyes Publications, Park Ridge, NJ (1993). 

  6. Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI, Rodríguez-Macías FJ, Elías AL, Muñoz-Sandoval E, Cano-Márquez AG, Charlier J-C, Terrones H. Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today, 5, 351 (2010). http://dx.doi.org/10.1016/j.nantod.2010.06.010. 

  7. Bernal JD. The structure of graphite. Proc Royal Soc Lond A, 106, 749 (1924). http://dx.doi.org/10.1098/rspa.1924.0101. 

  8. Chung DDL. Review graphite. J Mater Sci, 37, 1475 (2002). http://dx.doi.org/10.1023/A:1014915307738. 

  9. Rhim YR. The Structural and Property Evolution of Cellulose During Carbonization [PhD Thesis], Johns Hopkins University, Baltimore, MD (2009). 

  10. Inagaki M. New Carbons: Control of Structure and Functions. 1st ed., Elsevier Science, New York, NY (2000). 

  11. Delhaes P. Polymorphism of carbon. In: Delhaes P, ed. Graphite and Precursors, Gordon & Breach, Amsterdam, 1 (2001). 

  12. Ren Z, Lan Y, Wang Y. Aligned Carbon Nanotubes: Physics, Concepts, Fabrication and Devices, Springer Verlag, Heidelberg (2013). 

  13. Franklin RE. The structure of graphitic carbons. Acta Crystallogr, 4, 253 (1951). http://dx.doi.org/10.1107/S0365110X51000842. 

  14. Houska CR, Warren BE. X-ray study of the graphitization of carbon black. J Appl Phys, 25, 1503 (1954). http://dx.doi.org/10.1063/1.1702373. 

  15. Oberlin A. High-resolution TEM studies of carbonization and graphitization. In: Thrower PA, ed. Chemistry and Physics of Carbon, Vol. 22, Marcel Dekker, New York, NY, 1 (1989). 

  16. Dobb MG, Guo H, Johnson DJ, Par CR. Structure-compressional property relations in carbon fibres. Carbon, 33, 1553 (1995). http://dx.doi.org/10.1016/0008-6223(95)00114-S. 

  17. Wissler M. Graphite and carbon powders for electrochemical applications. J Power Sources, 156, 142 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.02.064. 

  18. Wilhelm HA, Croset B, Medjahdi G. Proportion and dispersion of rhombohedral sequences in the hexagonal structure of graphite powders. Carbon, 45, 2356 (2007). http://dx.doi.org/10.1016/j.carbon.2007.07.010. 

  19. Toyo Tanso Co., Ltd. Carbon-graphite composite product catalogue. Available from: http://www.toyotanso.co.jp/. 

  20. Cho KY, Kim KJ, Lim YS, Chung YJ, Chi SH. Specimen geometry effects on oxidation behavior of nuclear graphite. Carbon Lett, 7, 196 (2006). 

  21. Xiaowei L, Jean-Charles R, Suyuan Y. Effect of temperature on graphite oxidation behavior. Nucl Eng Des, 227, 273 (2004). http://dx.doi.org/10.1016/j.nucengdes.2003.11.004. 

  22. Fan CL, He H, Zhang KH, Han SC. Structural developments of artificial graphite scraps in further graphitization and its relationships with discharge capacity. Electrochim Acta, 75, 311 (2012). http://dx.doi.org/10.1016/j.electacta.2012.05.010. 

  23. Parker SP. McGraw-Hill Encyclopedia of Chemistry. 2nd ed., McGraw-Hill, New York, NY, 455 (1993). 

  24. Castner HY. Electrolytic apparatus. GB Patent 19,089 (1893). 

  25. Acheson EG. Manufacture of graphite. US Patent 568,323 (1896). 

  26. Wen KY, Marrow TJ, Marsden BJ. The microstructure of nuclear graphite binders. Carbon, 46, 62 (2008). http://dx.doi.org/10.1016/j.carbon.2007.10.025. 

  27. Considine GD. Van Nostrand's Encyclopedia of Chemistry. 5th ed., Wiley-Interscience, Hoboken, NJ (2005). 

  28. Cunningham N, Lefèvre M, Dodelet JP, Thomas Y, Pelletier S. Structural and mechanical characterization of as-compacted powder mixtures of graphite and phenolic resin. Carbon, 43, 3054 (2005). http://dx.doi.org/10.1016/j.carbon.2005.06.045. 

  29. Choi WK, Kim BJ, Chi SH, Park SJ. Nuclear graphites (I): oxidation behaviors. Carbon Lett, 10, 239 (2009). http://dx.doi.org/10.5714/CL.2009.10.3.239. 

  30. Lee SM, Kang DS, Kim WS, Roh JS. Fabrication of isotropic bulk graphite using artificial graphite scrap. Carbon Lett, 15, 142 (2014). http://dx.doi.org/10.5714/CL.2014.15.2.142. 

  31. Oh JK, Lee SW, Park KW. Preparation of isotropic carbon with high density. J Korean Ceram Soc, 28, 908 (1991). 

  32. Carlson RK, Ferritto JJ. Manufacture of high density, high strength isotropic graphite. US Patent 4,226,900 (1980). 

  33. Albers TL, Miller DJ, Jones A. The characterization of highly crystalline, isotropic graphite. Proceedings of the American Carbon Society, Seattle, WA, D021 (2007). 

  34. Oh JK, Park KW, Korea Institute of Science and Technology. A Study on Utilization of Graphite as Material of High Quality Products, Ministry of Science and Technology, Gwacheon (1992). 

  35. Inagaki M. Applications of polycrystalline graphite. In: Delhaes P, ed. Graphite and Precursors, Gordon & Breach, Amsterdam, 179 (2001). 

  36. Hove JE, Riley WC. Graphite. In: Hove JE, Riley WC, eds. Ceramics for Advanced Technologies, Wiley, New York, NY, Chapter 2 (1965). 

  37. Mrozowski SW, Phillips LW. Proceedings of the First and Second Conferences on Carbon: Held at the University of Buffalo, Buffalo, New York, 1953 & 1955, University of Buffalo, Buffalo, NY (1956). 

  38. Lewis IC. Baked and graphitized carbon. In: Kirk RE, Othmer DF, eds. Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 4, Bearing Materials to Carbon. 4th ed., John Wiley & Sons, New York, NY, 953 (1992). 

  39. Wolf R. Manufacture of bulk carbon and grapidte materials. In: Rand B, Appleyard SP, Yardim MF, eds. Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance, Vol. 374, Springer Netherlands, 217 (2001). http://dx.doi.org/10.1007/978-94-010-1013-9_12. 

  40. Irving DR, Blankenbaker EV. Graphite. In: Bureau of Mines, ed. Minerals Yearbook Metals and Minerals (Except Fuels) 1954, Vol. 1, United States Government Printing Office, Washington, DC, 523 (1958). 

  41. Marrett R, Stadelhofer JW, Marsh H. Die Verkokung von flüssigen Kohlenwasserstoffen zur Herstellung von Kohlenstoff-Produkten. Chem Ing Tech, 55, 1 (1983). http://dx.doi.org/10.1002/cite.330550102. 

  42. Bloomer WJ. Production of needle coke from coal for pitch. US Patent 3,617,515 (1971). 

  43. Echterhoff H, Heinze G. Verfahren zur Herstellung von Koksen fuer die Kunstkohlenindustrie. DE Patent 958,278 (1957). 

  44. Wilkening S. Qualitätsentwicklung und Marktsituation von Petrolkoks für die Aluminiumgewinnung Mitteilung aus dem Leichtmetall-Forschungsinstitut der Vereinigte. Erzmetall, 29, 255 (1976). 

  45. Romey I, Glaser H, Marrett R, Tillmanns H. Herstellung von Nadelkoks aus Steinkohlen-teerpech für Elektrographit. Erdöl und Kohle, Erdgas, Petrochemie, 36, 562 (1983). 

  46. Kimber GM, Brown A, Kirk JN. Carbon '80. Proceedings of the 3rd International Carbon Conference, Baden Baden, Germany, 443 (1980). 

  47. Mackles L, Heindl RA, Mong LE. Chemical analyses, surface area, and thermal reactions of natural graphite, and refractoriness of the ashes. J Am Ceram Soc, 36, 266 (1953). http://dx.doi.org/10.1111/j.1151-2916.1953.tb12880.x. 

  48. Codd LW. Natural graphite. In: Codd LW, Materials and Technology, Vol. 2, Non-Metallic Ores, Silicate Industries and Solid Mineral Fuels, Longman, London, Chapter 7 (1971). 

  49. Akezuma M, Okuzawa K, Esumi K, Meguro K, Honda H. Physicochemical properties of quinoline-soluble and quinolineinsoluble mesophases. Carbon, 25, 517 (1987). http://dx.doi.org/10.1016/0008-6223(87)90192-8. 

  50. Bourrat X, Roche EJ, Lavin JG. Structure of mesophase pitch fibers. Carbon, 28, 435 (1990). http://dx.doi.org/10.1016/0008-6223(90)90017-S. 

  51. Shiraishi M, Terriere G, Oberlin A. Electron microscopic study on graphitization of bulk mesophases. J Mater Sci, 13, 702 (1978). http://dx.doi.org/10.1007/BF00570504. 

  52. Mochida I, Toshima H, Korai Y, Hino T. Oxygen distribution in the mesophase pitch fibre after oxidative stabilization. J Mater Sci, 24, 389 (1989). http://dx.doi.org/10.1007/BF01107416. 

  53. Ōtani S. On the carbon fiber from the molten pyrolysis products. Carbon, 3, 31 (1965). http://dx.doi.org/10.1016/0008-6223(65)90024-2. 

  54. Hüttinger KJ, Ji Ping W. Kinetics of mesophase formation in a stirred tank reactor and properties of the products. II. Discontinuous reactor. Carbon, 30, 1 (1992). http://dx.doi.org/10.1016/0008-6223(92)90099-I. 

  55. Azami K, Yamamoto S, Sanada Y. Kinetics of mesophase formation of petroleum pitch. Carbon, 32, 947 (1994). http://dx.doi.org/10.1016/0008-6223(94)90054-X. 

  56. Köchling KH, McEnaney B, Müller S, Fitzer E. International committee for characterization and terminology of carbon “first publication of 14 further tentative definitions,” Carbon, 23, 601 (1985). http://dx.doi.org/10.1016/0008-6223(85)90100-9. 

  57. Honda H. Carbonaceous mesophase: history and prospects. Carbon, 26, 139 (1988). http://dx.doi.org/10.1016/0008-6223(88)90030-9. 

  58. Chae JH, Kim KJ, Cho KY, Choi JY. The carbonization behaviors of coal tar pitch for mechanical seal. Carbon Lett, 2, 182 (2001). 

  59. Laušević Z, Marinković S. Mechanical properties and chemistry of carbonization of Phenol formaldehyde resin. Carbon, 24, 575 (1986). http://dx.doi.org/10.1016/0008-6223(86)90148-X. 

  60. Yamashita Y, Ōuchi K. A study on carbonization of phenol-formaldehyde resin labelled with deuterium and 13 C. Carbon, 19, 89 (1981). http://dx.doi.org/10.1016/0008-6223(81)90112-3. 

  61. Lum R, Wilkins CW, Robbins M, Lyons AM, Jones RP. Thermal analysis of graphite and carbon-phenolic composites by pyrolysis-mass spectrometry. Carbon, 21, 111 (1983). http://dx.doi.org/10.1016/0008-6223(83)90165-3. 

  62. Knop A, Scheib W. Chemistry and Application of Phenolic Resins, Springer-Verlag, Heidelberg (1979). 

  63. Magampa PP, Manyala N, Focke WW. Properties of graphite composites based on natural and synthetic graphite powders and a phenolic novolac binder. J Nucl Mater, 436, 76 (2013). http://dx.doi.org/10.1016/j.jnucmat.2013.01.315. 

  64. Juel LH, Shea Jr FL. Production of shaped carbon articles. US Patent 2,500,209 (1950). 

  65. Sato Y, Kitano T, Inagaki M, Sakai M. Viscous flow of carbon black dispersed pitches: The dependence on temperature and carbon black concentration. Carbon, 28, 143 (1990). http://dx.doi.org/10.1016/0008-6223(90)90105-8. 

  66. Jones BF, Wright MG. An observation concerning the pore structure of extruded graphite. Carbon, 8, 689 (1970). http://dx.doi.org/10.1016/0008-6223(70)90062-X. 

  67. Juel LH. Method and apparatus for controlling orientation of needle-like carbon particles in extruded carbon stock. US Patent 3,676,535 (1972). 

  68. Turk DL. Processing of baked and graphitized carbon. In: Kirk RE, Othmer DF, eds. Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 4, Bearing Materials to Carbon. 4th ed., John Wiley & Sons, New York, NY, 960 (1992). 

  69. Rhee DR. Ununterbrochen arbeitende Kolbenstrangpresse fuer bildsame Massen. Patent DE 632,410 (1936). 

  70. Bowen EA, Burden RF, Shesler EG. Auger extrusion for furnace electrodes. US Patent 3,196,486 (1965). 

  71. SGL Group, The Carbon Company. Carbon electrodes: performance products for non-ferrous arc furnace applications. Available from: http://www.sglgroup.com/cms/_common/downloads/products/product-groups/gce/carbon-electrodes/Carbon_Electrodes_e.pdf. 

  72. SGL Group, The Carbon Company. Ultra-high-performance graphite electrodes. Available from: http://www.sglgroup.com/cms/_common/downloads/products/product-groups/gce/graphite-electrodes/Graphite_electrodes_e.pdf. 

  73. Nuklear-Chemie und- Metallurgie GmbH (NUKEM). A process for the production of spherical fuel elements comprising graphite. GB Patent 1,137,013 (1967). 

  74. Oberlin A. Carbonization and graphitization. Carbon, 22, 521 (1984). http://dx.doi.org/10.1016/0008-6223(84)90086-1. 

  75. Charette A, Kocaefe D, Saint-Romain JL, Couderc P. Comparison of various pitches for impregnation in carbon electrodes. Carbon, 29, 1015 (1991). http://dx.doi.org/10.1016/0008-6223(91)90181-H. 

  76. Youm HN, Kim KJ, Lee JM, Chung YJ. Effects of impregnation on the manufacture of high density carbon materials. J Korean Ceram Soc, 30, 852 (1993). 

  77. Menéndez R, Bermejo J, Figueeiras A. Tar and pitch: composition and application. In: Marsh H, Rodríguez-Reinoso F, eds. Sciences of Carbon Materials, Universidad de Alicante, Alicante, Spain, 173 (2000). 

  78. Jeitner IF, Nedopil IE. Verfahren zur Herstellung von Kohle- und Graphitformkoerpern. DE Patent 969,619 (1958). 

  79. Peter O. Verfahren zur Herstellung von KohleelektrodenA process for preparing carbon electrodes. DE Patent 900,569 (1953). 

  80. Mantell CL. Carbon and Graphite Handbook, Interscience Publishers, New York, NY (1968). 

  81. Fitzer E. The future of carbon-carbon composites. Carbon, 25, 163 (1987). http://dx.doi.org/10.1016/0008-6223(87)90116-3. 

  82. Kawamura K, Bragg RH. Graphitization of pitch coke: changes in mean interlayer spacing, strain and weight. Carbon, 24, 301 (1986). http://dx.doi.org/10.1016/0008-6223(86)90231-9. 

  83. Eatherly WP, Piper EL. Manufacture. In: Nightingale RE, ed. Nuclear Graphite, Academic Press, New York, NY, 21 (1962). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로