최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국도서관 정보학회지 = Journal of Korean Library and Information Science Society, v.47 no.4, 2016년, pp.289 - 307
최성필 (경기대학교 문헌정보학과) , 유석종 (한국과학기술정보연구원 생명의료융합기술연구실) , 조현양 (경기대학교 문헌정보학과)
This paper introduces a software system and process model for constructing domain-specific relation extraction datasets semi-automatically. The system uses a set of terms such as genes, proteins diseases and so forth as inputs and then by exploiting massive biological interaction database, generates...
Alex, B., Grover, C., Haddow, B., Kabadjor, M., Klein, E., Matthews, M., Wang, X. 2008. Assisted Curation: Does Text Mining Really Help?. In Pacific Symposium on Biocomputing (Vol. 13, pp. 556-567).
Alnazzawi, N., Thompson, P., & Ananiadou, S. 2014. Building a semantically annotated corpus for congestive heart and renal failure from clinical records and the literature. In Proceedings of the 5th International Workshop on Health Text Mining and Information Analysis (Louhi)@ EACL (pp. 69-74).
Bader, G. D., Betel, D., & Hogue, C. W. V. 2003. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Research, 31(1): 248-250.
Blaschke, C., Hirschman, L., & Valencia, A. 2002. Information extraction in molecular biology. Briefings in Bioinformatics, 3(2): 154-165.
Bunescu, R., Ge, R., Kate, R. J., Marcotte, E. M., Mooney, R. J., Ramani, A. K., & Wong, Y. W. 2005. Comparative experiments on learning information extractors for proteins and their interactions. Artificial Intelligence in Medicine, 33(2): 139-155.
Chatr-aryamontri, A., Ceol, A., Palazzi, L. M., Nardelli, G., Schneider, M. V., Castagnoli, L., & Cesareni, G. 2007. MINT: the Molecular INTeraction database. Nucleic Acids Research, 35(Database issue), D572-D 574. https://doi.org/10.1093/nar/gkl950
Choi, S.-P., & Myaeng, S.-H. 2010. Simplicity is Better: Revisiting Single Kernel PPI Extraction. In Proceedings of the 23rd International Conference on Computational Linguistics (pp. 206-214). Stroudsburg, PA, USA: Association for Computational Linguistics.
Ding, J., Berleant, D., Nettleton, D., & Wurtele, E. 2002. Mining MEDLINE: abstracts, sentences, or phrases? Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 326-337.
Fundel, K., Kuffner, R., & Zimmer, R. 2007. RelEx-Relation extraction using dependency parse trees. Bioinformatics, 23(3): 365-371. https://doi.org/10.1093/bioinformatics/btl616
Haddow, B., & Alex, B. 2008. Exploiting Multiply Annotated Corpora in Biomedical Information Extraction Tasks. In D. T. Nicoletta Calzolari (Conference Chair) Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis (Ed.), Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08). Marrakech, Morocco: European Language Resources Association (ELRA).
Hastie, T., Tibshirani, R., & Friedman, J. 2009. The Elements of Statistical Learning. New York, NY: Springer New York.
Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., Apweiler, R. 2004. IntAct: an open source molecular interaction database. Nucleic Acids Research, 32(Database issue), D452-D455. https://doi.org/10.1093/nar/gkh052
Hirschman, L., Yeh, A., Blaschke, C., & Valencia, A. 2005. Overview of BioCreAtIvE: critical assessment of information extraction for biology. BMC Bioinformatics, 6(Suppl 1), S1.
Huang, C.-C., & Lu, Z. 2016. Community challenges in biomedical text mining over 10 years: success, failure and the future. Briefings in Bioinformatics, 17(1): 132-144.
Ivanovic, M., & Budimac, Z. 2014. An overview of ontologies and data resources in medical domains. Expert Systems with Applications, 41(11), 5158-5166.
Kim, J.-D., Pyysalo, S., Ohta, T., Bossy, R., Nguyen, N., & Tsujii, J. ichi. 2011. Overview of BioNLP Shared Task 2011. In Proceedings of the BioNLP Shared Task 2011 Workshop (pp. 1-6). Stroudsburg, PA, USA: Association for Computational Linguistics.
Krallinger, M., Leitner, F., Rodriguez-Penagos, C., & Valencia, A. 2008. Overview of the protein-protein interaction annotation extraction task of BioCreative II. Genome Biology, 9(Suppl 2), S4. https://doi.org/10.1186/gb-2008-9-s2-s4
Lee, J ., Kim, S., Lee, S., Lee, K., & Kang, J. 2012 . High Precision Rule Based PPI Extraction and Per-pair Basis Performance Evaluation. In Proceedings of the ACM Sixth International Workshop on Data and Text Mining in Biomedical Informatics (pp. 69-76). New York, NY, USA: ACM.
Li, L., Guo, R., Jiang, Z., & Huang, D. 2014. Improving Kernel-based protein-protein interaction extraction by unsupervised word representation. In Bioinformatics and Biomedicine (BIBM), 2014 IEEE International Conference on (pp. 379-384). IEEE.
Malhotra, A., Younesi, E., Gundel, M., Muller, B., Heneka, M. T., & Hofmann-Apitius, M. 2014. ADO: a disease ontology representing the domain knowledge specific to Alzheimer's disease. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 10(2), 238-246.
Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., & McClosky, D. 2014. The Stanford CoreNLP Natural Language Processing Toolkit. In Association for Computational Linguistics (ACL) System Demonstrations (pp. 55-60).
Mintz, M., Bills, S., Snow, R., & Jurafsky, D. 2009. Distant Supervision for Relation Extraction Without Labeled Data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2 - Volume 2 (pp. 1003-1011). Stroudsburg, PA, USA: Association for Computational Linguistics.
Nedellec, C. 2005. Learning language in logic-genic interaction extraction challenge. In Proceedings of the 4th Learning Language in Logic Workshop (LLL05) (Vol. 7). Citeseer.
Pyysalo, S., Ginter, F., Heimonen, J., Bjorne, J., Boberg, J., Jarvinen, J., & Salakoski, T. 2007. BioInfer: a corpus for information extraction in the biomedical domain. BMC Bioinformatics, 8(1): 50.
Ravikumar, K., Liu, H., Cohn, J. D., Wall, M. E., & Verspoor, K. 2012. Literature mining of protein-residue associations with graph rules learned through distant supervision. Journal of Biomedical Semantics, 3 Suppl 3, S2.
Rubin, D. L., Shah, N. H., & Noy, N. F. 2008. Biomedical ontologies: a functional perspective. Briefings in Bioinformatics, 9(1): 75-90.
Saffer, J. D., & Burnett, V. L. 2014. Introduction to Biomedical Literature Text Mining: Context and Objectives. In Biomedical Literature Mining (pp. 1-7). Springer.
Segura Bedmar, I., Martinez, P., & Sanchez Cisneros, D. 2011. The 1st DDIExtraction-2011 Challenge Task: Extraction of Drug-Drug Interactions from Biomedical Texts.
Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., & Tyers, M. 2006. BioGRID: a general repository for interaction datasets. Nucleic Acids Research, 34(Database issue), D535-539.
Thompson, P., Iqbal, S. A., McNaught, J., & Ananiadou, S. 2009. Construction of an annotated corpus to support biomedical information extraction. BMC Bioinformatics, 10(1): 349.
Uzuner, o., South, B. R., Shen, S., & DuVall, S. L. 2011. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. Journal of the American Medical Informatics Association: JAMIA, 18(5): 552-556.
Xenarios, I., Rice, D. W., Salwinski, L., Baron, M. K., Marcotte, E. M., & Eisenberg, D. 2000. DIP: the Database of Interacting Proteins. Nucleic Acids Research, 28(1), 289-291.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.