$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

프로바이오틱 유산균으로 제조한 사워도우의 미생물학적 및 이화학적 특성
Microbiological and chemical properties of sourdough fermented with probiotic lactic acid bacteria 원문보기

Korean journal of microbiology = 미생물학회지, v.52 no.1, 2016년, pp.84 - 97  

임은서 (동명대학교 식품영양학과)

초록
AI-Helper 아이콘AI-Helper

재래식 된장으로부터 분리된 유산균은 형태학적, 생화학적 특성과 당 발효능 및 16S rRNA 염기서열 분석을 통해 Enterococcus faecium SBP12, Pediococcus halophilus SBP20, Lactobacillus fermentum SBP33, Leuconostoc mesenteroides SBP37, Pediococcus pentosaceus SBP41, Lactobacillus brevis SBP49, Lactobacillus acidophilus SBP55 및 Enterococcus faecalis SBP58로 동정되었다. SBP20, SBP33, SBP49와 SBP55 균주는 인공 위액과 담즙액 내에서 6 log cycle 이상 생균수를 유지하였으나, SBP12와 SBP58은 낮은 pH 하에서 2시간만에 균수가 급격하게 감소되었다. 특히, SBP49와 SBP55는 HT-29 세포에 대한 부착능이 높고, 항생제에 대한 저항성이 크며, Bacillus cereus ATCC 11778과 Staphylococcus aureus ATCC 6538의 식중독균에 대한 항균활성을 나타내었으므로, 이 두 균주는 프로바이오틱 선발 기준에 적합한 것으로 추정된다. 게다가 SBP49와 SBP55를 이용하여 사워도우를 제조한 결과, 발효 직후 도우 내 pH, 산도 및 유산균수에는 유의한 차이가 없었으나, SBP49는 많은 양의 유산을 생산한 반면, SBP55는 과산화수소를 더 많이 생산하였다. SBP49와 SBP55 유산균은 유산과 과산화수소뿐만 아니라 박테리오신 등의 항균물질을 생산하므로 사워도우 내 존재하는 식중독균 저해에 효과적이었다.

Abstract AI-Helper 아이콘AI-Helper

Isolates from Korean fermented soybean paste were identified as Enterococcus faecium SBP12, Pediococcus halophilus SBP20, Lactobacillus fermentum SBP33, Leuconostoc mesenteroides SBP37, Pediococcus pentosaceus SBP41, Lactobacillus brevis SBP49, Lactobacillus acidophilus SBP55, and Enterococcus faeca...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구에서는 우리나라 전통 발효식품인 된장으로부터 프로바이오틱 선발 기준에 적합한 균주를 검색하고, 빵에서 주로 분리되는 식중독균에 대한 항균작용을 나타내는 유산균을 분리 동정하였다. 또한 선발된 유산균으로 사워도우를 제조한 후 미생물학적 및 이화학적 특성과 항균작용으로 인한 저장성 향상 효과를 알아보고자 한다.
  • 따라서 본 연구에서는 우리나라 전통 발효식품인 된장으로부터 프로바이오틱 선발 기준에 적합한 균주를 검색하고, 빵에서 주로 분리되는 식중독균에 대한 항균작용을 나타내는 유산균을 분리 동정하였다. 또한 선발된 유산균으로 사워도우를 제조한 후 미생물학적 및 이화학적 특성과 항균작용으로 인한 저장성 향상 효과를 알아보고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
프로바이오틱 유산균이 인체에 주는 효능은? 프로바이오틱 균주로서는 건강에 유익한 것으로 널리 알려진 Lactobacillus, Streptococcus 및 Bifidobacterium 속 유산균 들이 대부분이다. 프로바이오틱 유산균은 장내 유익한 정상 균총으로서 만성복통, 설사 및 변비 완화 등의 정장 작용이 탁월하며, 아토피 피부염이나 알레르기 질환 제어에도 효과적인 것으로 보고되고 있다(Soccol et al., 2010).
프로바이오틱이란? 프로바이오틱(probiotic)은 우리 몸의 면역기능을 강화하고 항균물질 생산을 통해 대장 내에 염증이나 가스를 생산하는 유해 세균과 세포의 노화를 유발하는 활성산소와 혈관을 좁혀 심혈관계 질환을 유발하는 나쁜 콜레스테롤(Low Density Lipoprotein, LDL) 및 암 세포의 증식을 유발하는 돌연변이원 등을 제거할 수 있는 유익균으로써 장 기능을 개선시켜 건강을 이롭게 하는 살아있는 미생물, 일명 생균제이다(Fuller, 1989). 프로바이오틱 선발기준으로는 균주 자체가 독성이나 병원성을 나타내지 않는 안전성이 가장 우선 확보되어야 하고, 체내에 유입되어 위산이나 담즙 및 항생제에 대해 저항하여 활성을 유지한 채로 장에 도달해야 한다.
프로바이오틱 균주로 선발되기 위해서는 어떤 조건이 충족되어야 하는가? 프로바이오틱(probiotic)은 우리 몸의 면역기능을 강화하고 항균물질 생산을 통해 대장 내에 염증이나 가스를 생산하는 유해 세균과 세포의 노화를 유발하는 활성산소와 혈관을 좁혀 심혈관계 질환을 유발하는 나쁜 콜레스테롤(Low Density Lipoprotein, LDL) 및 암 세포의 증식을 유발하는 돌연변이원 등을 제거할 수 있는 유익균으로써 장 기능을 개선시켜 건강을 이롭게 하는 살아있는 미생물, 일명 생균제이다(Fuller, 1989). 프로바이오틱 선발기준으로는 균주 자체가 독성이나 병원성을 나타내지 않는 안전성이 가장 우선 확보되어야 하고, 체내에 유입되어 위산이나 담즙 및 항생제에 대해 저항하여 활성을 유지한 채로 장에 도달해야 한다. 또한 대장 상피세포에 부착하여 항균물질을 생산함으로써 유해세균의 부착과 증식을 억제할 수 있어야 하고, 항암, 항콜레스테롤 및 항산화등 건강을 이롭게 하는 각종 생리활성을 발휘할 수 있어야 하며, 발효식품이나 건강보조식품 및 의약품에 적용될 때에도 활성과 기능성이 안정하게 유지될 수 있어야 한다(Saarela et al., 2000).
질의응답 정보가 도움이 되었나요?

참고문헌 (58)

  1. Ali, A.A. 2010. Beneficial role of lactic acid bacteria in food preservation and human health : a review. Res. J. Microbiol. 5, 1213-1221. 

  2. Arendt, E.K., Ryan, L.A.M., and Dal Bello, F. 2007. Impact of sourdough on the texture of bread. Food Microbiol. 24, 165-174. 

  3. Argyri, A.A., Zoumpopoulou, G., Karatzas, K.A.G., Tsakalidou, E., Nychas, G.J.E., Panagou, E.Z., and Tassou, C.C. 2013. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 33, 282-291. 

  4. Ashraf, R. and Shah, N.P. 2011. Antibiotic resistance of probiotic organisms and safety of probiotic dairy products. Int. Food Res. J. 18, 837-853. 

  5. Barber, S. and Baguena, R. 1989. Microflora of the sourdough of wheat flour bread. XI. Changes during fermentation in the microflora of sourdoughs prepared by multi-stage process and of bread doughs. Rev. Agroquim. Technol. Aliment. 29, 478-491. 

  6. Bauer, A.W., Kirby, W.M., Sherris, J.C., and Turck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493-496. 

  7. Caplice, E. and Fitzgerald, G.F. 1999. Food fermentations: role of microorganisms in food production and preservation. Int. J. Food Microbiol. 50, 131-149. 

  8. Cebrian, R., Banos, A., Valdivia, E., Perez-Pulido, R., Martinez-Bueno, M., and Maqueda, M. 2012. Characterization of functional, safety, and probiotic properties of Enterococcus faecalis UGRA10, a new AS-48-producer strain. Food Microbiol. 30, 59-67. 

  9. Chavan, R.S. and Chavan, S.R. 2011. Sourdough Technology- a traditional way for wholesome foods: a review. Compr. Rev. Food Sci. F. 10, 170-183. 

  10. Cho, K.M. and Seo, W.T. 2007. Bacterial diversity in Korean traditional soybean fermented foods (doenjang and ganjang) by 16S rRNA gene sequence analysis. Food Sci. Biotechnol. 16, 320-324. 

  11. Choi, H.J., Kim, Y.W., Hwang, I.Y., Kim, J.H., and Yoon, S. 2012. Evaluation of Leuconostoc citreum HO12 and Weissella koreensis HO20 isolated from kimchi as a starter culture for whole wheat sourdough. Food Chem. 134, 2208-2216. 

  12. Corsetti, A., Gobbetti, M., Rossi, J., and Damiani, P. 1998. Antimould activity of sourdough lactic acid bacteria: identification of mixture of organic acids produced by Lactobacillus sanfrancisco CBI. Appl. Microbiol. Biotechnol. 50, 253-256. 

  13. Corsetti, A., Gobbetti, M., and Smacchi, E. 1996. Antibacterial activity of sourdough lactic acid bacteria: isolation of a bacteriocin-like inhibitory substance from Lactobacillus sanfrancisco C57. Food Microbiol. 13, 447-456. 

  14. Corsetti, A. and Settanni, L. 2007. Lactobacilli in sourdough fermentation. Food Res. Int. 40, 539-558. 

  15. Corsetti, A., Settanni, L., and Van Sinderen, D. 2004. Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. J. Appl. Microbiol. 96, 521-534. 

  16. De Vuyst, L. and Neysens, P. 2005. The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci. Technol. 16, 43-56. 

  17. De Vuyst, L. and Vancanneyt, M. 2007. Biodiversity and identification of sourdough lactic acid bacteria. Food Microbiol. 24, 120-127. 

  18. Ehrmann, M.A., Kurzak, P., Bauer, J., and Vogel, R.F. 2002. Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. J. Appl. Microbiol. 92, 966-975. 

  19. Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66, 365-378. 

  20. Ganzle, M.G., Holtzel, A., Walter, J., Jung, G., and Hammes, W.P. 2000. Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl. Environ. Microbiol. 66, 4325-4333. 

  21. Gilliland, S.E. 1969. Enzymatic determination of residual hydrogen peroxide in milk. J. Dairy Sci. 52, 321-324. 

  22. Gobbetti, M. 1998. The sourdough microflora: interactions of lactic acid bacteria and yeasts. Trends Food Sci. Technol. 9, 267-274. 

  23. Gobbetti, M., De Angelis, M., Corsetti, A., and Di Cagno, R. 2005. Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci. Technol. 16, 57-59. 

  24. Hammes, W.P., Brandt, M.J., Francis, K.L., Rosenheim, M., Seitter, F.H., and Vogelmann, S. 2005. Microbial ecology of cereal fermentations. Trends Food Sci. Technol. 16, 4-11. 

  25. Heller, J.K. 2001. Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am. J. Clin. Nutr. 73, 374S-379S. 

  26. Hole, H., Nilssen, O., and Nes, I.F. 1991. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol. 173, 3879-3887. 

  27. Jeong, D.W., Kim, H.R., Jung, G.S., Han, S.H., Kim, C.T., and Lee, J.H. 2014. Bacterial community migration in the ripening of Doenjang, a traditional Korean fermented soybean food. J. Microbiol. Biotechnol. 24, 648-660. 

  28. Kashket, E.R. 1987. Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol. Rev. 46, 233-244. 

  29. Katina, K., Sauri, M., Alakomi, H.L., and Mattila-Sandholm, T. 2002. Potential of lactic acid bacteria to inhibit rope spoilage in wheat sourdough bread. LWT-Food Sci. Technol. 35, 38-45. 

  30. Kawai, Y., Saito, T., Toba, T., Samant, S.K., and Itoh, T. 1994. Isolation and characterization of a highly hydrophobic new bacteriocin (gassericin A) from Lactobacillus gasseri LA39. Biosci. Biotech. Biochem. 58, 1218-1221. 

  31. Lorca, G.L., Wadstrom, T., Valdez, G.F., and Ljungh, A. 2001. Lactobacillus acidophilus autolysins inhibit Helicobacter pylori in vitro. Curr. Microbiol. 42, 39-44. 

  32. Luangsakul, N., Keeratipibul, S., Jindamorakot, S., and Tanasupawat, S. 2009. Lactic acid bacteria and yeasts isolated from the starter doughs for Chinese steamed buns in Thailand. LWT-Food Sci. Technol. 42, 1404-1412. 

  33. Maragkoudakis, P.A., Zoumpopoulou, G., Christos, M., Kalantzopoulos, G., Pot, B., and Tsakalidou, E. 2006. Probiotic potential of Lactobacillus strains isolates from dairy products. Int. Dairy J. 16, 189-199. 

  34. Messens, W. and De Vuyst, L. 2002. Inhibitory substances produced by lactobacilli isolated from sourdoughs - a review. Int. J. Food Microbiol. 72, 31-43. 

  35. Mundt, J.O. 1986. Lactobacillus, pp. 577-592. In Sneath, P.H.A., Mair, N.S., Sharpe, M.E., and Holt, J.G. (eds.) Bergey's Manual of Systematic Bacteriology, Williams & Wilkins, Baltimore, MS, USA. 

  36. Oh, Y.J. and Jung, D.S. 2015. Evaluation of probiotic properties of Lactobacillus and Pediococcus strains isolation from Omegisool, a traditionally fermented millet alcoholic beverage in Korea. LWT-Food Sci. Technol. 63, 437-444. 

  37. Otero, M.C. and Nader-Macias, M.E. 2006. Inhibition of Staphylococcus aureus by $H_2O_2$ -producing Lactobacillus gasseri isolated from the vaginal tract of cattle. Anim. Reprod. Sci. 96, 35-46. 

  38. Ouwehand, A.C. and Salminen, S. 2003. In vitro adhesion assays for probiotics and their in vivo relevance: a review. Microb. Ecol. Health D. 15, 175-184. 

  39. Paramithiotis, S., Gioulatos, S., Tsakalidou, E., and Kalantzopoulos, G. 2006. Interactions between Saccharomyces cerevisiae and lactic acid bacteria in sourdough. Process Biochem. 41, 2429-2433. 

  40. Plessas, S., Bosnea, L., Psarianos, C., Koutinas, A.A., Marchant, R., and Banat, I.M. 2008. Lactic acid production by mixed cultures of Kluyveromyces marxianus, Lactobacillus delbrueckii spp. bulgaricus and Lactobacillus helveticus. Bioresource Technol. 99, 5951-5955. 

  41. Ranadheera, R.D.C.S., Baines, S.K., and Adams, M.C. 2010. Importance of food in probiotic efficacy. Food Res. Int. 43, 1-7. 

  42. Rocha, J.M. and Malcata, F.W. 2012. Microbiological profile of maize and rye flours, and sourdough used for the manufacture of traditional Portuguese bread. Food Microbiol. 31, 72-88. 

  43. Saarela, M., Mogensen, G., Fonden, R., Matto, J., and Mattila-Sandholm, T. 2000. Probiotic bacteria: safety, functional and technological properties. J. Biotechnol. 84, 197-215. 

  44. Salminen, S., Isolauri, E., and Salminen, E. 1996. Probiotics and stabilization of the gut mucosal barrier. Asia Pacific J. Clin. Nutr. 5, 53-56. 

  45. Servin, A.L. and Coconnier, M.H. 2003. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract. Res. Clin. Gastroenterol. 17, 741-754. 

  46. Settanni, L., Massitti, O., Van Sinderen, D., and Corsetti, A. 2005. In situ activity of a bacteriocin-producing Lactococcus lactis strain. Influence on the interactions between lactic acid bacteria during sourdough fermentation. J. Appl. Microbiol. 99, 670-681. 

  47. Sgouras, D., Maragkoudakis, P., Petraki, K., Martine-Gonzalez, B., Eriotou E., Michopoulas, S., Kalantzopoulos, G., Tsakalidou, E., and Mentis, A. 2004. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strains Shirota. Appl. Environ. Microbiol. 70, 518-526. 

  48. Shah, N.P. and Ravula, R.R. 2002. Influence of water activity on fermentation, organic acids production and viability of yogurt and probiotic bacteria. Aust. J. Dairy Technol. 55, 127-131. 

  49. Shokryazdan, P., Sieo, C.C., Kalavathy, R., Liang, J.B., Alitheen, N.B., Jahromi, M.F., and Ho, Y.W. 2014. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. BioMed. Res. Int. 2014, 1-16. 

  50. Soccol, C.R., De Souza Vandenberghe, L.P., Spier, M.R., Medeiros, A.B.P., Yamaguichi, C.T., De Dea Lindner, J., Pandey, A., and Thomaz-Soccol, V. 2010. The potential of probiotics: a review. Food Technol. Biotechnol. 48, 413-434. 

  51. Spicher, G. and Mastik, G. 1988. Interactions between the lactobacilli of sourdough and flour microflora. Getreide Mehl. Brot. 42, 338-342. 

  52. Spicher, G., Rabe, E., Sommer, R., and Stephan, H. 1981. The microflora of sourdough.XIV. Communication: About the behavior of homofermentative sourdough bacteria and yeasts in mixed culture. Z. Lebensm. Unters. Forsch. 173, 291-296. 

  53. Suskovic, J., Kos, B., Beganovic, J., Pavunc, A.L., Habjanic, K., and Matosic, S. 2010. Antimicrobial activity-the most important property of probiotic and starter lactic acid bacteria. Food Technol. Biotechnol. 48, 296-307. 

  54. Theron, M.M. and Lues, J.F.R. 2010. Mechanisms of microbial inhibition, pp. 117-150. In Organic acids and food preservation. CRC Press, Boca Raton, USA. 

  55. Tuomola, E.M. and Salminen, S.J. 1998. Adhesion of some probiotic and diary Lactobacillus strains to Caco-2 cell cultures. Int. J. Food Microbiol.41, 45-51. 

  56. Velez, M.P., De Keersmaecker, S.C., and Vanderleyden, J. 2007. Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiol. Lett. 276, 140-148. 

  57. Veskovic Moracanin, S., Dukic, D.A., and Memisi, N.R. 2014. Bacteriocins produced by lactic acid bacteria-a review. APTEFF 45, 271-283. 

  58. Vogel, R.F., Bocker, G., Stolz, P., Ehrmann, M., Fanta, D., Ludwig, W., Pot, B., Kersters, K., Schleifer, K.H., and Hammes, W.P. 1999. Identification of lactobacilli from sourdough and description of Lactobacillus pontis sp. nov. Int. J. System. Bacteriol. 44, 223-229. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로