$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

귀추적 사고 과정에서 모델의 역할 -이론과 경험 연구를 통한 도식화-
Roles of Models in Abductive Reasoning: A Schematization through Theoretical and Empirical Studies 원문보기

한국과학교육학회지 = Journal of the Korean association for science education, v.36 no.4, 2016년, pp.551 - 561  

오필석 (경인교육대학교)

초록
AI-Helper 아이콘AI-Helper

본 연구의 목적은 과학 문제 해결을 위한 귀추적 사고 과정에서 모델의 역할을 이론 연구와 경험 연구를 통해 조사하는 것이었다. 이 연구는 지구과학 탐구 학습 프로그램을 개발하기 위한 설계 기반 연구의 맥락에서 이루어졌으며, 본 논문에서는 그 중 지질학 분야의 귀추적 탐구 활동을 재설계하는 과정을 중점적으로 다루었다. 이론 연구에서는 지구과학에 특징적인 연구 방법으로서 귀추와 모델링을 관련지어 연구한 대표적인 연구자들의 저작들을 집중적으로 고찰하였다. 그 결과로, 증거, 자원 모델, 설명 모델의 관계를 나타낸 모델링 중심의 귀추적 추론에 대한 잠정적인 도식을 제안하였다. 이 도식을 지질학 문제를 해결하는 전문가들의 사고 과정을 분석한 경험 연구를 통해 정교화 하였다. 새로운 도식에는 결정적 증거, 결정적 자원 모델, 과학적으로 타당한 설명 모델의 역할이 포함되었다. 이와 더불어 모델링 중심의 귀추적 탐구 수업에서 학생들의 사고 과정을 지원할 수 있는 교수법적인 시사점을 도출하였다.

Abstract AI-Helper 아이콘AI-Helper

The purpose of this study is to investigate both theoretically and empirically the roles of models in abductive reasoning for scientific problem solving. The context of the study is design-based research the goal of which is to develop inquiry learning programs in the domain of earth science, and th...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
과학 교과의 모(母)학문은 무엇인가? 학생들이 탐구에 필요한 실천 행위(또는 실행, practice)를 통해 과학 교과를 배워야 한다는 것이 강조되면서, 모(母)학문인 과학의 본성과 그것을 특징짓는 실천 행위들에 대한 관심이 다시 고조되고 있다 (NGSS Lead States, 2013; Osborne, 2014). 그런데 전통적으로 과학의 본성은 흔히 실험 과학이라 불리는 물상 과학을 중심으로 논의되어져 왔다(Gray, 2014).
전통적으로 과학의 본성은 무엇으로 논의 되었는가? 학생들이 탐구에 필요한 실천 행위(또는 실행, practice)를 통해 과학 교과를 배워야 한다는 것이 강조되면서, 모(母)학문인 과학의 본성과 그것을 특징짓는 실천 행위들에 대한 관심이 다시 고조되고 있다 (NGSS Lead States, 2013; Osborne, 2014). 그런데 전통적으로 과학의 본성은 흔히 실험 과학이라 불리는 물상 과학을 중심으로 논의되어져 왔다(Gray, 2014). 하지만 과학의 여러 분야 중에서 지구과학은 역사 과학(historical science) 및 해석 과학(interpretive science)의 특징을 지니고 있어서 물상 과학과는 다른 탐구 방법들이 동원되곤 한다(Frodeman, 1995; Gray, 2014; Kleinhans, Buskes, & de Regt, 2005; Oh, 2011).
지구과학의 사후 추정이란 무엇인가? 지구과학에서는 흔히 후진 추론(retrodiction) 또는 사후 추정(postdiction)의 문제를 다룬다. 이는 역사적 흔적을 관찰하고 그것을 발생시킨 과거의 원인을 추리하거나 현재에 일어나는 현상으로부터 미처 확인되지 않은 인과적 과정을 추론해 내는 것을 뜻한다(Ault, 1998; Engelhardt & Zimmermann, 1982; Kitts, 1977; Oh, 2008, 2011). 예를 들어, 지구과학자들은 인도에서 발견된 다양한 지질 시대 암석들의 자화(magnetization) 자료로부터 인도 대륙이 과거 페름기로부터 현재까지 오랜 시간 동안 지구의 표면에서 이동해 왔다는 결론을 내릴 수 있다(Engelhardt & Zimmermann, 1982, p.
질의응답 정보가 도움이 되었나요?

참고문헌 (51)

  1. Ahn, Y., & Cho, W. S. (2012). Reflection on a geological fieldwork lesson for rock observation. In J. G. Sung (2012). Science teacher throwing away a textbook 2 (pp. 59-93). Busan: Fun Encounter. 

  2. Ault, C. R. Jr. (1998). Criteria of excellence for geological inquiry: The necessity of ambiguity. Journal of Research in Science Teaching, 35(2), 189-212. 

  3. Ault, C. R. Jr., & Dodick, J. (2010). Tracking the footprints puzzle: The problematic persistence of science-as-process in teaching the nature and culture of science. Science Education, 94(6), 1092-1122. 

  4. Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. The Journal of the Learning Sciences, 13(1), 1-14. 

  5. Clement, J. J., Cecilia, M., & Oviedo, N. (2003). Abduction and analogy in scientific model construction. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Philadelphia, PA. 

  6. Clement, J. J. (2008). Creative model construction in scientists and students: The role of imagery, analogy, and mental simulation. Dordrecht, The Netherlands: Springer. 

  7. Clement, J. J. (2013). Roles for explanatory models and analogies in conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed., pp. 412-446). New York: Routledge. 

  8. Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological issues. The Journal of the Learning Sciences, 13(1), 15-42. 

  9. Engelhardt, W. von, & Zimmermann, J. (1982). Theory of earth science (translated by L. Fisher). Cambridge, UK: Cambridge University Press. 

  10. Ford, D. J. (2005). The challenges of observing geologically: Third graders' descriptions of rock and mineral properties. Science Education, 89, 276-295. 

  11. Frodeman, R. (1995). Geological reasoning: Geology as an interpretive and historical science. GSA Bulletin, 107(8), 960-968. 

  12. Gilbert, S. W., & Ireton, S. W. (2003). Understanding models in earth and space science. Arlington, VA: NSTA Press. 

  13. Gobert, J. D., & Clement, J. J. (1999). Effect of student-generated diagram versus student-generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of Research in Science Teaching, 26(1), 39-53. 

  14. Gray, R. (2014). The distinction between experimental and historical sciences as a framework for improving classroom inquiry. Science Education, 98(2), 327-341. 

  15. Haig, B. D. (2005). An abductive theory of scientific method. Psychological Methods, 10(4), 371-388. 

  16. Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 89-120). Greenwich, CT: Information Age Publishing. 

  17. Hanson, N. R. (1958). Patterns of discovery. London: Cambridge University Press. 

  18. Kitts, D. B. (1977). The structure of geology. Dallas, TX: Southern Methodist University Press. 

  19. Kleinhans, M. G., Buskes, C. J. J., & de Regt, H. W. (2005). Terra incognita: Explanation and reduction in earth science. International Studies in the Philosophy of Science, 19(3), 289-317. 

  20. Lee, Y.-S., Kim, S.-S., & Lee, H.-L. (2013). Pre-service elementary teacher knowledge understanding and teaching-learning type about 'stratum and rock'. Journal of Korean Society of Earth Science Education, 6(1), 69-77. 

  21. Lehrer, R., Schauble, L., & Lucas, D. (2008). Supporting development of the epistemology of inquiry. Cognitive Development, 23, 512-520. 

  22. Maeng, S., Park, M., Lee, J.-A., & Kim, C.-J. (2007). A case study of middle school students' abductive inference during a geological field excursion. Journal of the Korean Association for Science Education, 27(9), 818-831. 

  23. Magnani, L. (1999). Model-based creative abduction. In L. Magnani, N. J. Nersessian & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 219-238). New York: Kluwer Academic/Plenum Publishers. 

  24. Magnani, L. (2001). Abduction, reason, and science: Process of discovery and explanation. New York: Kluwer Academic/Plenum Publishers. 

  25. Magnani, L. (2002). Epistemic mediators and model-based discovery in science. In L. Magnani & N. J. Nersessian (Eds.), Model-based reasoning: Science, technology, values (pp. 305-329). New York: Kluwer Academic/Plenum Publishers. 

  26. Magnani, L. (2004). Model-based and manipulative abduction in science. Foundation of Science, 9, 219-247. 

  27. Magnani, L. (2006). Multimodal abduction: External semiotic anchors and hybrid representations. Logic Journal of the IGPL, 14(2), 107-136. 

  28. Magnani, L. (2014). Understanding abduction: Inference, perception, and instinct. In L. Magnani (Ed.), Model-based reasoning in science and technology: Theoretical and cognitive issues (pp. 173-205). Berlin: Springer. 

  29. Miall, A. D., & Miall, C. E. (2004). Empiricism and model-building in stratigraphy: Around the hermeneutic circle in the pursuit of stratigraphic correlation. Stratigraphy, 1(1), 27-46. 

  30. Moon, B., Lee, G., & Kim, H. (2009). The characteristics of observing and inferring of elementary gifted students in inquiry activities of the strata. Journal of Korean Elementary Science Education, 28(4), 476-486. 

  31. National Research Council (1996). National Science Education Standards. Washington, DC: The National Academies Press. 

  32. Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. J. Nersessian & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 5-22). New York: Kluwer Academic/Plenum Publishers. 

  33. Nersessian, N. J. (2008). Creating scientific concepts. Cambridge, MA: The MIT Press. 

  34. Nersessian, N. J. (2013). Mental modeling in conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed., pp. 395-411). New York: Routledge. 

  35. NGSS Lead States (2013). Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press. 

  36. Oh, P. S. (2006). Rule-inferring strategies for abductive reasoning in the process of solving an earth-environmental problem. Journal of the Korean Association for Science Education, 26(4), 546-558. 

  37. Oh, P. S. (2007a). Analysis of scientific models in the earth domain of the 10th grade science textbooks. Journal of the Korean Earth Science Society, 28(4), 393-404. 

  38. Oh, P. S. (2007b). Analysis of the manners of using scientific models in secondary earth science classrooms: With a focus on lessons in the domains of atmospheric and oceanic earth sciences. Journal of the Korean Association for Science Education, 27(7), 675-692. 

  39. Oh, P. S. (2008). Adopting the abductive inquiry model (AIM) into undergraduate earth science laboratories. In V. Eriksson (Ed.), Science education in the 21st century (pp. 263-277). New York: Nova. 

  40. Oh, P. S. (2010). How can teachers help students formulate scientific hypotheses? Some strategies found in abductive inquiry activities of earth science. International Journal of Science Education, 32(4), pp. 541-560. 

  41. Oh, P. S. (2011). Characteristics of abductive inquiry in earth science: An undergraduate case study. Science Education, 95, 409-430. 

  42. Oh, P. S. (2015). A theoretical review and trial application of the 'resources-based view' (RBV) as an alternative cognitive theory. Journal of the Korean Association for Science Education, 35(6), 971-984. 

  43. Oh, P. S., & Kim, C.-J. (2005). A theoretical study on abduction as an inquiry method in earth science. Journal of the Korean Association for Science Education, 25(5), 610-623. 

  44. Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. 

  45. Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25, 77-196. 

  46. Raia, F. (2005). Students' understanding of complex dynamic systems. Journal of Geoscience Education, 53(3), 297-308. 

  47. Rivet, A. E., & Kastens, K. A. (2012). Developing a construct-based assessment to examine students' analogical reasoning around physical models in earth science. Journal of Research in Science Teaching, 49(6), 713-743. 

  48. Thagard, P. (2010). How brains make mental models. In L. Magnani, W. Carnielli, & C. Pizzi (Ed.), Model-based reasoning in science and technology: Abduction, logic, and computational discovery (pp. 447-461). Berlin: Springer. 

  49. The Design-Based Research Collective (2015). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5-8. 

  50. Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535-585. 

  51. Wee, S.-M., Kwak, J.-S., Cho, H., & Kim, H.-J. (2008). The analysis of the teachers' and students' views about the difficulties within teaching and learning activity on geology units in elementary school science. Journal of Korean Elementary Science Education, 27(4), 420-436. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로