$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색도움말
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

통합검색

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

논문 상세정보

KVLCC2에 대한 파랑 중 부가저항과 수직운동에 대한 수치해석

Numerical Analysis of Added Resistance and Vertical Ship Motions in Waves for KVLCC2

초록
용어

논문에서 용어와 풀이말을 자동 추출한 결과로,
시범 서비스 중입니다.

본 연구에서는 KVLCC2의 파랑 중 부가저항과 운동을 Unsteady Reynolds-Averaged Navier-Stokes(URANS) 방법과 3차원 포텐셜법을 이용하여 추정하였다. 수치해석은 3가지 선박속도(설계, 운항, 정지 속도)에서 다양한 파랑조건에서의 선박의 부가저항 및 수직운동(상하 및 종 동요 응답)의 추정에 대해 수행되었다. 첫째, CFD와 3차원 포텐셜 방법을 이용하여 규칙파에서의 선박속도와 파랑조건에 따른 선박의 부가저항과 운동을 추정하고 실험값과의 비교를 통해 두 수치 해석법의 특징을 살펴보았다. 둘째, CFD를 이용한 선박의 속도별 비정상 파형 분포와 선박의 부가저항 및 운동의 시간이력에 대해 해석하였다. 수치 격자계에 대한 수렴도를 확인하였고 수치계산과 모형시험 결과를 비교하여 사용한 수치 기법들을 체계적으로 검증 하였다. 이를 통해 본 연구에 적용된 수치해석법들의 신뢰성과 선속변화에 따른 파랑 중 부가저항과 선박의 수직운동에 대한 관계를 확인하였다.

Abstract

The present study provides numerical simulations to predict the added resistance and ship motion of the KVLCC2 in regular waves using the unsteady Reynolds-Averaged Navier-Stokes (URANS) and 3-D potential methods. This numerical analysis is focused on added resistance and vertical ship motions (heave and pitch) under a wide range of wave conditions at three ship speeds (design, operating and zero speeds). Firstly, the characteristics of the CFD and 3-D potential flow methods are presented to predict added resistance and ship motions in regular waves taking into account various wave conditions at design speed to provide a validation study as well as at operating and zero speeds. Secondly, analyses of added resistance and ship motion with unsteady wave patterns and time history results as simulated by CFD were performed at each ship speed. Systematic validation and verifications of the numerical computations in this study were made against available Experimental Fluid Dynamics (EFD) data including grid convergence tests to demonstrate that reliable numerical results were obtained for the prediction of added resistance and ship motion in waves. Relationships between added resistance, vertical motion and changes in ship speeds were also found.

본문요약 

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법
  • In this section, the simulation results by CFD and the 3-D potential methods are presented by comparing with available experimental data for the added resistance and the ship motions in regular waves.

    In this section, the simulation results by CFD and the 3-D potential methods are presented by comparing with available experimental data for the added resistance and the ship motions in regular waves. Unsteady wave patterns and time history results of the resistance and ship vertical motions in waves simulated by CFD are also provided.

  • In this study, forward speed ship motions are solved using the AFS formulation due to its fast and accurate results.

    PRECAL is 3D source-sink frequency domain code capable to solve the forward speed linear Boundary Value Problem (BVP) using the Approximate Forward Speed (AFS) and the Exact Forward Speed (EFS) formulations. In this study, forward speed ship motions are solved using the AFS formulation due to its fast and accurate results. The added resistance is calculated using the near-field method based on direct pressure integration over the mean wetted hull surface using the second-order forces to calculate wave drift forces while the first-order forces and moments are calculated to solve the ship motions.

  • In this study, the numerical simulations for the prediction of the added resistance and the ship motions for KVLCC2 in regular waves are performed by the URANS and the 3-D potential flow methods as a validation study by comparison with experimental data.

    In this study, the numerical simulations for the prediction of the added resistance and the ship motions for KVLCC2 in regular waves are performed by the URANS and the 3-D potential flow methods as a validation study by comparison with experimental data. For CFD, grid convergence test are carried out to find an optimal mesh system.

  • The added resistance and the ship vertical motions (heave and pitch) in regular head waves have been simulated by the unsteady RANS and the 3-D potential flow methods for a wide range of wave conditions at three ship speeds which are design speed (Vs=15.5kts) as validation study including grid convergence test as well as operating (Vs=12kts) and zero (Vs=0kts) speeds taking into account the ship slow steaming speed and harbour conditions, respectively.

    The added resistance and the ship vertical motions (heave and pitch) in regular head waves have been simulated by the unsteady RANS and the 3-D potential flow methods for a wide range of wave conditions at three ship speeds which are design speed (Vs=15.5kts) as validation study including grid convergence test as well as operating (Vs=12kts) and zero (Vs=0kts) speeds taking into account the ship slow steaming speed and harbour conditions, respectively. Time histories of the resistance and the ship motions in waves calculated by CFD are analysed at each ship speed and the relationship of the resistance force and the ship motions are investigated with unsteady wave patterns and viscous effect.

  • With consideration for the slow steaming or the realistic operating speeds of the vessel, the effect of the ship speed on the added resistance and ship motions was investigated.

    With consideration for the slow steaming or the realistic operating speeds of the vessel, the effect of the ship speed on the added resistance and ship motions was investigated. In addition to the assumed operating speed (12kts), the cases for the zero speed (0kts) taking into account harbour condition are also simulated as summarised in Table 4.

이론/모형
  • 3-D potential flow calculation is performed using PRECAL (PREssure CALculation) software developed by MARIN (2009), based on the planer panel approach which can calculate the seakeeping behaviour of monohulls, catamarans and trimarans.

    3-D potential flow calculation is performed using PRECAL (PREssure CALculation) software developed by MARIN (2009), based on the planer panel approach which can calculate the seakeeping behaviour of monohulls, catamarans and trimarans. In addition to the rigid body motions, it can also calculate the deformation modes of the ships girder, internal loads, pressure on the hull and added resistance in waves.

  • Semi-implicit method for pressure-linked equations (SIMPLE) algorithm was used to resolve the pressure-velocity coupling and a standard k-ε model was applied as the turbulence model.

    Semi-implicit method for pressure-linked equations (SIMPLE) algorithm was used to resolve the pressure-velocity coupling and a standard k-ε model was applied as the turbulence model.

본문요약 정보가 도움이 되었나요?

저자의 다른 논문

참고문헌 (32)

  1. 1. Arribas, F. P.(2007), Some methods to obtain the added resistance of a ship advancing waves, Ocean Eng., 34, pp. 946-955. 
  2. 2. Bockmann, A., C. Pakozdi, T. Kristiansen, H. Jang and J. Kim(2014), An experimental and computational development of a benchmark solution for the validation of numerical wave tank, Proceedings of the ASME 2014, OMAE2014 -24710, pp. 1-14. 
  3. 3. Deng, G. B., A. Leroyer, E. Guilmineau, P. Queutey, M. Visonneau and J. Wackers(2010), Verification and validation for unsteady computation. Gothenburg 2010: A workshop on CFD in ship hydrodynamics, pp. 237-259. 
  4. 4. Faltinsen, O. M., K. J. Minsaas, N. Liapis and S. O. Skjordal(1980), Prediction of resistance and propulsion and propulsion of a ship in a seaway, Proceeding of 13th Sym. Naval Hydrodynamics, Tokyo, pp. 505-529. 
  5. 5. Gerritsma, J. and W. Beukelman(1972), Analysis of the resistance increase in waves in a fast cargo ship, Intern. Shipbuilding Progr. 19(217), pp. 285-93. 
  6. 6. Havelock, T. H.(1937), The resistance of a ship among waves, Proc. Roy. Soc. London A, 161, pp. 299-308. 
  7. 7. IMO(2012), International Maritime Organisation, Interim guidelines for the calculation of the coefficient fw for decrease in ship speed in a representative sea condition for trial use, MEPC.1/Circ.796. 
  8. 8. ITTC(2014), International Towing Tank Conference, The specialist committee on seakeeping-final report and recommendations to the 27th ITTC, Copenhagen. 
  9. 9. Joncquez, S. A. G.(2009), Second-order forces and moments acting on ships in waves, Ph.D. thesis, Technical University of Denmark. 
  10. 10. Joosen, W. P. A.(1966), Added resistance of ships in waves. Proc. 6th Symp. Naval Hydrodynamics, Wasington, D.C., pp. 23-34. 
  11. 11. Kim, H. T., C. B. Hong, G. H. Lee and B. K. Kim(2015), Prediction of added resistance of a ship in waves using computational fluid dynamics. In: Proceedings of the Annual Spring Conference, SNAK, Korea, pp. 465-478. 
  12. 12. Kim, H. T., J. J. Kim, N. Y. Choi and G. H. Lee(2014), A study on the operating trim, shallow water and wave effect. In: Proceedings of the Annual Autumn Conference, SNAK, Korea, pp. 631-637. 
  13. 13. Kim, K. H., Y. Kim and Y. Kim(2007), WISH JIP project report and manual, Marine Hydrodynamic Laboratory, Seoul University. 
  14. 14. Kim, K. H., M. G. Seo and Y. H. Kim(2012), Numerical analysis on added resistance of ships. International Journal of Offshore and Polar Engineering 22, pp. 21-29. 
  15. 15. Kim, M. G. and D. W. Park(2015), A study on the green ship design for ultra large container ship, Journal of the Korean Society of Marine Environment & Safety, Vol. 21, No. 5, pp. 558-570. 
  16. 16. Kim, Y. C., K. S. Kim, J. Kim, Y. S. Kim, S. H. Van and Y. H. Jang(2015), Calculation of added resistance in waves for KVLCC2 and its modified hull form using RANS-based method. In: Proceedings of the Twenty-fifth International Ocean and Polar Engineering Conference, Hawaii, USA, pp. 924-930. 
  17. 17. Kwon, Y. J.(2008), Speed loss due to added resistance in wind and waves, the Naval Architect 3, pp. 14-16. 
  18. 18. Larssson L., F. Stern and M. Visonneau(2010), Experimental data from Osaka University. In: Proceedings of a workshop on numerical ship hydrodynamics, Gothenburg, Sweden, pp. 137-145. 
  19. 19. Lee, J. H., M. G. Seo, D. M. Park, K. K. Yang, K. H. Kim and Y. Kim(2013), Study on the effects of hull form on added resistance. In: Proceeding of the 12th International Symposium on Practical Design of Ships and Other Floating Structures (PRADS2013), Changwon, Korea, pp. 329-337. 
  20. 20. Lee, S. M.(2015), Experimental study on added resistance of VLCC for ship's operating condition in waves, Journal of the Korean Society of Marine Environment & Safety, Vol. 21, No. 3, pp. 240-245. 
  21. 21. Liu, S., A. Papanikolaou and G. Zaraphonitis(2011), Prediction of added resistance of ships in waves, Ocean Engineering 38, pp. 641-650. 
  22. 22. MARIN(2009), Maritime Research Institute Netherlands, PRECAL V6.5 Theory Manual, MARIN Report, 17926-2-CPS. 
  23. 23. Maruo, H.(1960), The drift of a body floating on waves, Journal of Ship Research, 4(3), pp. 1-10. 
  24. 24. Moctar, B., J. Kaufmann, J. Ley, J. Oberhagemann, V. Shigunov and T. Zorn(2010), Prediction of ship resistance and ship motions using RANSE, Gothenburg 2010: A workshop on CFD in ship hydrodynamics. 
  25. 25. Newman, J. N.(1967), The drift force and moment on ships in waves. Journal of Ship Research, Vol. 11, pp. 51-60. 
  26. 26. Park, D. M., M. G. Seo, J. H. Lee, K. K. Yang and Y. H. Kim(2014), Systematic experimental and numerical analysis on added resistance in waves, Journal of the Society of Naval Architects of Korea, 51(6). pp. 459-479. 
  27. 27. Prpic-Orsic, J. and O. M. Faltinsen(2012), Estimation of ship speed loss and associated CO2 emissions in a seaway, Ocean Engineering 44, pp. 1-10. 
  28. 28. Sadat-Hosseini H., P. M. Carrica, H. Kim, Y. Toda and F. Stern(2010), URANS simulation and validation of added resistance and motions of the KVLCC2 crude carrier with fixed and free surgte conditions, Gothenburg 2010: A workshop on CFD in ship hydrodynamics. 
  29. 29. Sadat-Hosseini H., P. Wu, P. M. Carrica, H. Kim, Y. Toda and F. Stern(2013), CFD verification and validation of added resistance and motions of KVLCC2 with fixed and free surge in short and long head waves, Ocean Eng. 48, pp. 240-273. 
  30. 30. Salvesen, N., E. O. Tuck and O. M. Faltinsen(1970), Ship motions and sea loads. SNAME, Jersey City, pp. 1-30. 
  31. 31. Shen, Z. and D. Wan(2012), RANS computations of added resistance and motions of ships in head waves, In: Proceedings of 22nd International Offshore and Polar Engineering Conference, Rhodes, Greece, pp. 1096-1103. 
  32. 32. Shigunov, V. and A. Papanikolaou(2014), Criteria for minimum powering and maneuverability in adverse weather conditions, The 14th International Ship Stability Workship (ISSW), Kuala Lumbur, Malasia, pp. 174-184. 

문의하기 

궁금한 사항이나 기타 의견이 있으시면 남겨주세요.

Q&A 등록

원문보기

원문 PDF 다운로드

  • ScienceON :
  • AccessON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

오픈액세스(OA) 유형

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

DOI 인용 스타일

"" 핵심어 질의응답