$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

과학 긍정경험 구성 변인 간의 구조방정식 모형에 관한 연구
A Study on the Structural Equation Model Among Components of Positive Experiences about Science 원문보기

한국과학교육학회지 = Journal of the Korean association for science education, v.37 no.3, 2017년, pp.507 - 521  

김희경 (강원대학교) ,  곽영순 (한국교육과정평가원) ,  강훈식 (서울교육대학교) ,  신영준 (경인교육대학교) ,  이성희 (서울강서초등학교) ,  이수영 (서울교육대학교)

초록
AI-Helper 아이콘AI-Helper

이 연구의 목적은 과학 학습 관련 정의적 특성 간의 상호작용을 종합적으로 이해하기 위하여 '과학 긍정경험' 구성 변인들 간의 유의미한 경로모형을 규명하는 것이다. 여기서 과학 긍정경험이란 과학학습에 관련된 학생들의 정의적 성취에 긍정적인 영향을 미치는 경험의 총체를 의미하며, 과학 긍정경험에 따른 학생들의 정의적 성취를 구성하는 5개 하위 변인은 '과학 학습 정서', '과학관련 자아개념', '과학 학습 동기', '과학관련 태도', 및 '과학관련 진로 포부'이다. 전국 17개 시도에서 4학년, 6학년, 8학년, 10학년에서 각각 1개 학급 학생들을 임의로 표집하여, 총 1841명을 대상으로 '과학 긍정경험 지표검사(TIPES)'를 사용하여 온라인 설문 조사를 실시하였다. 주요 변인들 간의 구조적 관계를 파악하기 위하여 구조방정식 모형을 선정하고, 최종 구조방정식 모형의 경로계수가 집단 간 차이가 있는지 확인하기 위한 다집단 분석을 실시하였다. 구조방정식 모형 분석 결과, 과학학습 긍정 정서와 부정 정서는 모두 과학관련 자아개념을 경유하여 과학 학습 동기, 과학관련 태도, 과학관련 진로 포부에 영향을 주는 것으로 나타났다. 배경 변인에 따른 집단 간 과학 긍정경험의 5개 하위 영역의 평균 차이를 t-test 검증을 통해 비교한 결과에 따르면, 과학 긍정경험의 5개 하위 영역은 성별, 학교급, 지역규모, 과학관련활동 참여 여부에 따라 평균값이 통계적으로 유의미한 차이가 나타났다. 학생의 배경 변인에 따라 구조방정식 경로모형에 차이가 있는지 알아보기 위해 실시한 다집단 분석 결과를 살펴보면, 성별과 학교급별에 따라서는 집단 간에 경로계수의 차이가 유의미하게 나타난 반면, 지역규모와 과학관련 활동 참여 여부에 따라서는 집단 간 경로계수 차이가 유의미하지 않았다. 결론에서는 본 연구의 결과를 토대로 학습자의 정의적 성취를 돕기 위한 과학교육에의 시사점을 논하였다.

Abstract AI-Helper 아이콘AI-Helper

The purpose of this study is to investigate a meaningful path model among the components of students' positive experiences about science and science learning to understand the interactive relationships among different variables of affective domains. Positive Experiences about Science (PES) means who...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
과학관련 ‘태도’에 포함되는 것은? 그동안 과학교육에서 정의적 영역 관련 연구 중 가장 큰 비중을 차지하면서 광범위하게 사용되어온 과학관련 ‘태도’(Fortus, 2014)는 일반적으로 과학에 대한 태도와 과학적 태도 두 가지를 포함하는 개념으로 사용된다(Shin et al., 2017a; 2017b; Song, Pak, & Jang, 1992).
Test of Science Related Attitude를 통해 알 수 있는, 과학관련 태도가 다루는 것은? 학습자의 과학관련 태도를 검사하기 위해 많이 사용된 검사 도구로는Fraser(1978)가 개발한 Test of Science Related Attitude(TOSRA)가있는데, 이 도구는 ‘과학 수업의 즐거움’, ‘과학에 대한 직업적 관심’,‘과학에 대한 취미적 관심’, ‘과학의 사회적 의미’, ‘과학자의 정상성’,‘과학 탐구에 대한 태도’, ‘과학적 태도의 수용’의 7가지 하위 영역으로 구성된다. 즉, 과학관련 태도는 크게 과학 수업에 대한 태도, 과학에 대한 태도, 과학적 태도에 대해 다루고 있음을 알 수 있다. 한편, 과학관련 태도가 과학 학습 및 진로선택에 주는 영향을 살펴본 연구들에 따르면, 과학에 대한 긍정적 태도는 학생들이 과학관련 진로를 추구하도록 결정하는데 긍정적 요인으로 작용하였으며(Oliver,Pettus, & Hedin, 1990), 학습동기를 높이고, 자기조절학습 전략 등과 같은 중재요인을 매개로 과학 학업성취도에 영향을 미치는 것으로 나타났다(Lee & Chung, 2014; Lee & Kim, 2004).
과학 긍정경험에 따른 학생들의 정의적 성취를 구성하는 5개 하위 변인은? 이 연구의 목적은 과학 학습 관련 정의적 특성 간의 상호작용을 종합적으로 이해하기 위하여 '과학 긍정경험' 구성 변인들 간의 유의미한 경로모형을 규명하는 것이다. 여기서 과학 긍정경험이란 과학학습에 관련된 학생들의 정의적 성취에 긍정적인 영향을 미치는 경험의 총체를 의미하며, 과학 긍정경험에 따른 학생들의 정의적 성취를 구성하는 5개 하위 변인은 '과학 학습 정서', '과학관련 자아개념', '과학 학습 동기', '과학관련 태도', 및 '과학관련 진로 포부'이다. 전국 17개 시도에서 4학년, 6학년, 8학년, 10학년에서 각각 1개 학급 학생들을 임의로 표집하여, 총 1841명을 대상으로 '과학 긍정경험 지표검사(TIPES)'를 사용하여 온라인 설문 조사를 실시하였다.
질의응답 정보가 도움이 되었나요?

참고문헌 (83)

  1. Ames, C., & Archer, J., (1988). Achievement goals in the classroom: Students' learning strategies and motivation process. Journal of Educational Psychology, 80(3), 260-267. 

  2. Archer, L., DeWitt, J., Osborne, J., Dillon, J., Willis, B., & Wong, B. (2010). "Doing" science versus "being" a scientist: Examining 10/11-year-old schoolchildren's constructions of science through the lens of identity. Science Education, 94(4), 617-639. 

  3. Beyer, S., & Bowden, E. M. (1997). Gender differences in self-perceptions: Convergent evidence from three measures of accuracy and bias. Personality and Social Psychology Bulletin, 23(2), 157-172. 

  4. Boekaerts, M. (2007). Understanding students' affective processes in the classroom. In P. A. Schutz & R. Pekrun (Eds.), Emotion in Education (pp. 37-56). Amsterdam: Academic Press. 

  5. Brownlow, S., Jacobi, T. & Rogers, M. (2000). Science anxiety as a function of gender and experience. Sex Roles, 42(1/2), 119-131. 

  6. Chang, C.-Y., & Cheng, W.-Y. (2008). Science achievement and students’ self-confidence and interest in science: A Taiwanese representative sample study. International Journal of Science Education, 30(9), 1183-1200. 

  7. Cho, J., Kim, S., Kim, M., Ok, H. J., Lim, H. M., & Son, S. K. (2012). Ways of Improving Korean Students' Affective Characteristics Based on PISA and TIMSS Results. (Research Report CRE 2012-4). Seoul: KICE. 

  8. Choe, S., Kim, J., Park, S., Og, E., Kim, J. & Baek, H. (2013). Strategies for Improving the Affective Characteristics of Korean Students Based on the Results of PISA and TIMSS. (Research Report RRE 2013-18). Seoul: KICE. 

  9. Coopersmith, S., & Feldman, R. (1974). Fostering positive self-concept and high self-esteem in the classroom. In R. H. Coop & K. P. White (Eds.), Psychological Concepts in the Classroom (pp. 192-225). New York, NY: Harper&Row. 

  10. Debacker, T. K., & Nelson, R. M. (2000). Motivation to learn science: Differences related to gender, class type, and ability. The Journal of Educational Research, 93(4), 245-254. 

  11. DeWitt, J., Osborne, J., Archer, L., Dillon, J., Willis, B., & Wong, B. (2013). Young children's aspirations in science: The unequivocal, the uncertain and the unthinkable. International Journal of Science Education, 35(6), 1037-1063. 

  12. Elliot, A. J., & McGregor, H. A. (2001). A 2 ${\times}$ 2 achievement goal framework. Journal of Personality and Social Psychology, 80(3), 501-519. 

  13. Falk, J. H., & Adelman, L. M. (2003). Investigating the impact of prior knowledge and interest on aquarium visitor learning. Journal of Research in Science Teaching, 40(2), 163-176. 

  14. Fortus, D. (2014). Attending to affect. Journal of Research in Science Teaching, 51(7), 821-835. 

  15. Fraser, B. J. (1978). Development of a test of science-related attitudes. Science Education, 62(4), 509-515. 

  16. Fredrickson, B. L. (1998). What good are positive emotions? Review of General Psychology, 2(3), 300-319. 

  17. Frenzel, A. C., Pekrun, R., & Goetz, T. (2007). Girls and mathematics-A "hopeless" issue? A control-value approach to gender differences in emotions towards mathematics. European Journal of Psychology of Education, 22(4), 497-514. 

  18. Gardner, P. L. (1996). The dimensionality of attitude scales: A widely misunderstood idea. International Journal of Science Education, 18(8), 913-919. 

  19. George, R. (2006). A cross-domain analysis of change in students' attitudes toward science and attitudes about the utility of science. International Journal of Science Education, 28(6), 571-589. 

  20. Ginzberg, E. (1972). Toward a theory of occupational choice: A restatement. The Career Development Quarterly, 20(3), 2-9. 

  21. Glaser-Zikuda, M., Stuchlikova, I., & Janik, T. (2013). Emotional aspects of learning and teaching: Reviewing the field- Discussing the issues. Orbis Scholae, 7(2), 7-22. 

  22. Glynn, S. M., Brickman, P., Armstrong, N., & Taasoobshirazi, G. (2011). Science motivation questionnaire II: Validation with science majors and nonscience majors. Journal of Research in Science Teaching, 48(10), 1159-1176. 

  23. Glynn, S. M., Taasoobshirazi, G. & Brickman, P. (2007), Nonscience majors learning science: A theoretical model of motivation. Journal for Research in Science Teaching, 44(8), 1088-1107. 

  24. Goetz, T., Frenzel, A. C., Pekrun, R., Hall, N. C., & Ludtke, O. (2007). Between-and within-domain relations of students’ academic emotions. Journal of Educational Psychology, 99(4), 715-733. 

  25. Gottfredson, L. S. (1981). Circumscription and compromise: A developmental theory of occupational aspirations. Journal of Counseling Psychology, 28(6). 545-579. 

  26. Ha, M., Kim, M., Park, K., & Lee, J. (2012). The analysis of level and structure of natural science high school students' science motivation compared to general high school students'. Journal of the Korean Association for Science Education, 32(5), 866-878. 

  27. Haney, R. E. (1964). The development of scientific attitudes. The Science Teacher, 31(12), 33-35. 

  28. Hazari, Z., Sonnert, G., Sadler, P. M., & Shanahan, M.-C. (2010). Connecting high school physics experiences, outcome expectations, physics identity, and physics career choice: A gender study. Journal of Research in Science Teaching, 47(8), 978-1003. 

  29. Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111-127. 

  30. Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. 

  31. Isen, A. M. (2000). Some perspectives on positive affect and self-regulation. Psychological Inquiry, 11(3), 184-187. 

  32. Jansen, M., Schroeders, U., & Ludtke, O. (2014). Academic self-concept in science: Multidimensionality, relations to achievement measures, and gender differences. Learning and Individual Differences, 30, 11-21. 

  33. Jo, S. (2011). The mediation effect of cognitive self-regulated learning strategy in the relationships between self-efficacy and achievement in science. Journal of the Korean Association for Research in Science Education, 31(6), 958-969. 

  34. Kang, E., Kim, C., Choe, S., Noh, T., Yoo, J., & Kim, H. (2015). The change of the relationship between Korean 4th graders' career aspirations in science and science identities. Journal of the Korean Association for Research in Science Education, 35(5), 841-856. 

  35. Kang, M., Kim, Y., Lim, H., & Yoo, Y. (2014). Investigating the structural relationship among science experience, learning motivation, achievement and career orientation of high school students. Journal of Research in Curriculum Instruction, 18(3), 625-643. 

  36. Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of Instructional Development, 10(3), 2-10. 

  37. Kim, E. J. & Yang, M. H. (2011). An exploratory study on academic emotions of Korean students. The Korean Journal of Educational Psychology, 25(3), 501-521. 

  38. Kim, J., Kim, M., & Hong, S. (2009). Thesis Writing with Structural Equation Model. Seoul: Communications Books, Inc. 

  39. Kim, S., Jung, C., & Shin, D. (2015). Research trends of science related attitude in the Korean major journals of science education. Journal of Learner-Centered Curriculum and Instruction, 15(12), 179-200. 

  40. KOFAC (2015). Development Research of Draft of 2015 Revised Subject Curriculum II - Science Curriculum. (Research Report BD15110002). Seoul: KOFAC. 

  41. KOFST (2002). How to cope with the evasion of science and engineering. The Science & Technology, 35(7), 43-65. 

  42. Kwak, Y. (2017). Exploration of features of Korean eighth grade students' attitudes toward science. Journal of the Korean Association for Research in Science Education, 37(1), 135-142. 

  43. Kwon, C., Hur, M., Yang, I., & Kim, Y. (2004). A cause analysis of learning environment variables of change in science attitudes on elementary and secondary school students. Journal of the Korean Association for Research in Science Education, 24(6), 1256-1271. 

  44. Lee, J. & Chung, Y. (2014). An analysis of structural relationship among the attitude toward science, science motivation, self-regulated learning strategy, and science achievement in middle school students. Journal of the Korean Association for Science Education, 34(5), 491-497. 

  45. Lee, J., Nam, S., Lee, M., Lee, J., & Lee, S. (2009). Rosenberg’ self-esteem scale: Analysis of item-level validity. The Korean Journal of Counseling and Psychotherapy, 21(1), 173-189. 

  46. Lee, J., Park, S., & Kim, Y. (2012). An analysis of educational factors on career choice of science-gifted students to science and technology bound universities. Journal of the Korean Association for Research in Science Education, 32(1), 15-29. 

  47. Lee, M. & Kim, K. (2004). Relationship between attitudes toward science and science achievement. Journal of the Korean Association for Research in Science Education, 24(2), 399-407. 

  48. Lent, R. W., Brown, S. D., & Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice, and performance. Journal of Vocational Behavior, 45(1), 79-122. 

  49. Lim, H. (2014). The relationship between elementary students' perception of science learning and their perception of science career. The Journal of Korea Elementary Education, 25(3), 227-238. 

  50. Limprecht, S., Janko, T., & Glaser-Zikuda, M. (2013). Achievement emotions of boys and girls in physics instruction: Does a portfolio make a difference? Orbis Scholae, 7(2) 43-66. 

  51. Linnenbrink, E. A. (2007). The role of affect in student learning: A multi-dimensional approach to considering the interaction of affect, motivation, and engagement. In P. A. Schutz & R. Pekrun (Eds.), Emotion in Education (pp. 107-124). Amsterdam: Academic Press. 

  52. Mallow, J. V. (1994). Gender-related science anxiety: A first binational study. Journal of Science Education and Technology, 3(4), 227-238. 

  53. Mazlo, J., Dormedy, D. F., Neimoth-Anderson, J. D., Urlacher, T., Carson, G. A., & Kelter, P. B. (2002). Assessment of motivational methods in the general chemistry laboratory. Journal of College Science Teaching, 36, 318-321. 

  54. McMillan, J. H., & Forsyth, D. R. (1991). What theories of motivation say about why learners learn. New Directions for Teaching and Learning, 45, 39-46. 

  55. MOE (2016a). General Plans for Science Education (2016.2.). MOE. 

  56. MOE (2016b). Result Announcement of PISA 2015. MOE Press Release (2016. 12. 6.). 

  57. Murayama, K., Pekrun, R., Lichtenfeld, S. & vom Hofe, R. (2013), Predicting long-term growth in students' mathematics achievement: The unique contributions of motivation and cognitive strategies. Child Development, 84(4), 1475-1490. 

  58. National Research Council (2011). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: The National Academies Press. 

  59. Nieswandt, M. (2007). Student affect and conceptual understanding in learning chemistry. Journal of Research in Science Teaching, 44(7), 908-937. 

  60. Oliver, W. H., Pettus, W. C., & Hedin, B. A. (1990). Three studies of factors affecting the attitudes of blacks and females toward the pursuit of science and science-related careers. Journal of Research in Science Teaching, 27(4), 289-314. 

  61. Osborne, J. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049-1079. 

  62. Parker, V. & Gerber, B. (2000). Effects of a science intervention program on middle-grade student achievement and attitudes. School Science and Mathematics, 100(5), 236-242. 

  63. Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18(4), 315-341. 

  64. Pekrun, R., Frenzel, A. C., Goetz, T., & Perry, R. P. (2007). The control-value theory of achievement emotions: An integrative approach to emotions in education. In P. A. Schutz & R. Pekrun (Eds.), Emotion in Education (pp. 13-36). Amsterdam: Academic Press. 

  65. Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., & Perry, R. P. (2011). Measuring emotions in students' learning and performance: The achievement emotions questionnaire (AEQ). Contemporary Educational Psychology, 36(1), 36-48. 

  66. Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Academic emotions in students’ self-regulated learning and achievement: A program of qualitative and quantitative research. Educational Psychologist, 37(2), 91-105. 

  67. Pintrich, P. R., & Schunk, D. H. (1995). Motivation in Education: Theory, Research, and Applications. Englewood Cliffs, NJ: Prentice-Hall. 

  68. Roberts, T. A. (1991). Gender and the influence of evaluations on self-assessments in achievement settings. Psychological Bulletin, 109(2), 297-308. 

  69. Rosenberg, M. (1965). Society and the Adolescent Self-image. Princeton, NJ: Princeton University Press. 

  70. Sayers, S. L., Curran, P. J., & Mueser, K. T. (1996). Factor structure and construct validity of the scale for the assessment of negative symptoms. Psychological Assessment, 8(3), 269-280. 

  71. Schunk D. H., & Zimmerman B. J. (2006). Competence and control beliefs: Distinguishing the means and ends. In Alexander P. A., Winne P. H. (Eds.), Handbook of Educational Psychology (2nd ed., pp. 349?367). Mahwah, NJ: Lawrence Erlbaum Associates. 

  72. Schutz, P. A., & Pekrun, R. (2007). Emotion in Education. Amsterdam: Academic Press. 

  73. Shin, D., & Park, B. (2007). Research synthesis of gender differences in Korean science education journals. Journal of the Korean Earth Science Society, 28(4), 453-461. 

  74. Shin, S., Ha, M., & Lee, J. (2016). The development and validation of instrument for measuring high school students’ STEM career motivation. Journal of the Korean Association for Research in Science Education, 36(1), 75-86. 

  75. Shin, Y., Kang, H., Kwak, Y., Kim, H., Lee, S.-Y., & Lee, S. (2017a). A comparative analysis of the test tools in science-related affective domains. Biology Education, 45(1), 41-54. 

  76. Shin, Y., Kwak, Y., Kim, H., Lee, S.-Y., Lee, S., & Kang, H. (2017b). Study on the development of test for indicators of positive experiences about science. Journal of the Korean Association for Research in Science Education, 37(2), 335-346. 

  77. Skaalvik, E. M., & Skaalvik, S. (2004). Self-concept and self-efficacy: A test of the internal/external frame of reference model and predictions of subsequent motivation and achievement. Psychological Reports, 95, 1187-1202. 

  78. Song, J., Pak, S.-J., & Jang, K.-A. (1992). Attitudes of boys and girls in elementary and secondary schools towards science lessons and scientists. Journal of the Korean Association for Research in Science Education, 12(3), 109-118. 

  79. Tobin, K., Ritchie, S., Oakley, J., Mergard, V., & Hudson, P. (2013). Relationships between emotional climate and the fluency of classroom interactions. Learning Environments Research, 16(1), 71-89. 

  80. Weinburgh, M. (1995). Gender differences in student attitudes toward science: A meta-analysis of the literature from 1970 to 1991. Journal of Research in Science Teaching, 32(4), 387-398. 

  81. Yoon, J. (2007). The analysis of causal relationship among students' science-related career. Journal of the Korean Association for Research in Science Education, 27(7), 570-582. 

  82. Zembylas, M. (2005). Beyond teacher cognition and teacher beliefs: The value of the ethnography of emotions in teaching. International Journal of Qualitative Studies in Education, 18(4), 465-487. 

  83. Zimmerman, B. J., & Bandura, A. (1994). Impact of self-regulatory influences and writing course attainment. American Educational Research Journal, 31(4), 845-862. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로