$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] A Novel Road Segmentation Technique from Orthophotos Using Deep Convolutional Autoencoders 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.33 no.4, 2017년, pp.423 - 436  

Sameen, Maher Ibrahim (Department of Civil Engineering, University Putra Malaysia) ,  Pradhan, Biswajeet (Department of Civil Engineering, University Putra Malaysia)

Abstract AI-Helper 아이콘AI-Helper

This paper presents a deep learning-based road segmentation framework from very high-resolution orthophotos. The proposed method uses Deep Convolutional Autoencoders for end-to-end mapping of orthophotos to road segmentations. In addition, a set of post-processing steps were applied to make the mode...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • This paper proposes a deep convolutional Autoencoder network for segmenting road objects from very high resolution orthophotos. Three optimization methods including grid search, random search, and Bayesian method were studied to obtain the best network for road segmentation.
본문요약 정보가 도움이 되었나요?

참고문헌 (38)

  1. Bergstra, J. and Y. Bengio, 2012. Random search for hyper-parameter optimization, Journal of Machine Learning Research, 13: 281-305 

  2. Colak, S., A. Lima, and M.C. Gonzalez, 2016. Understanding congested travel in urban areas, Nature communications, 7 

  3. Dahl, G. E., D. Yu, L. Deng, and A. Acero, 2012. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Transactions on audio, speech, and language processing, 20(1): 30-42 

  4. Devkota, K. C., A. D. Regmi, H. R. Pourghasemi, K. Yoshida, B. Pradhan, I. C. Ryu, M. R. Dhital, and O.F. Althuwaynee, 2013. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling- Narayanghat road section in Nepal Himalaya, Natural hazards, 65(1): 135-165 

  5. Jones, D. R., 2001. A taxonomy of global optimization methods based on response surfaces, Journal of global optimization, 21(4): 345-383 

  6. Kaddah, W., Y. Ouerhani, A. Alfalou, M. Desthieux, C. Brosseau, and C. Gutierrez, 2016. Roadmarking features extraction using theVIAPIX(R) system, Optics Communications,371: 117-127 

  7. Krizhevsky, A., I. Sutskever, and G.E. Hinton, 2012. Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, 1097-1105 

  8. Kumar, P., 2012. Road features extraction using terrestrial mobile laser scanning system, National University of Ireland Maynooth, Ireland. 

  9. Kumar, P., C. P. McElhinney, P. Lewis, and T. McCarthy, 2014. Automated road markings extraction from mobile laser scanning data, International Journal of Applied Earth Observation and Geoinformation, 32: 125-137 

  10. Kussul, N., M. Lavreniuk, S. Skakun, and A. Shelestov, 2017. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data, IEEE Geoscience and Remote Sensing Letters, 14(5): 778-782 

  11. Latinopoulos, D. and K. Kechagia, 2015. A GIS-based multi-criteria evaluation for wind farm site selection, A regional scale application in Greece. Renewable Energy, 78: 550-560 

  12. LeCun, Y., Y. Bengio, and G. Hinton, 2015. Deep learning, Nature, 521(7553): 436-444 

  13. Li, M., A. Stein, W. Bijker, and Q. Zhan, 2016. Regionbased urban road extraction from VHR satellite images using binary partition tree, International Journal of Applied Earth Observation and Geoinformation, 44: 217-225 

  14. Majumder, N., S. Poria, A. Gelbukh, and E. Cambria, 2017. Deep Learning-Based Document Modeling for Personality Detection from Text, IEEE Intelligent Systems, 32(2): 74-79 

  15. Mnih, V. and G.E. Hinton. 2010. Learning to detect roads in high-resolution aerial images, Proc. of 11th European Conference on Computer Vision, Grete, Greece, Sep. 5-11, pp. 210-223 

  16. Mockus, J., 1975. On Bayesian methods for seeking the extremum, Proc. of Optimization Techniques IFIP Technical Conference Novosibirsk, Berlin Heidelberg, Germany, Jul. 1-7, pp. 400-404 

  17. Nareyek, A., 2003. Choosing search heuristics by nonstationary reinforcement learning, Applied Optimization, 86: 523-544 

  18. Osborne, B. P., V. J. Osborne, and M. L. Kruger, 2012. Comparison of satellite surveying to traditional surveying methods for the resources industry, Journal of the British Interplanetary Society, 65(2): 98-104 

  19. Raschka, S., 2015. Python machine learning, Packt Publishing Ltd., U.K 

  20. Rathore, M. M., A. Ahmad, A. Paul, and S. Rho, 2016. Urban planning and building smart cities based on the internet of things using big data analytics, Computer Networks, 101: 63-80 

  21. Saito, S., T. Yamashita, and Y. Aoki, 2016. Multiple object extraction from aerial imagery with convolutional neural networks, Electronic Imaging, 2016(10): 1-9 

  22. Sameen, M. I. and B. Pradhan, 2016a. Assessment of the effects of expressway geometric design features on the frequency of accident crash rates using high-resolution laser scanning data and GIS, Geomatics, Natural Hazards and Risk, 1-15 

  23. Sameen, M. I. and B. Pradhan, 2016b. A Simplified Semi-Automatic Technique for Highway Extraction from High-Resolution Airborne LiDAR Data and Orthophotos, Journal of the Indian Society of Remote Sensing, 45(3): 1-11 

  24. Sameen, M. I. and B. Pradhan, 2017. Severity Prediction of Traffic Accidents with Recurrent Neural Networks, Applied Sciences, 7(6): 476 

  25. Sameen, M. I. and B. Pradhan, 2017a. Severity Prediction of Traffic Accidents with Recurrent Neural Networks, Applied Sciences, 7(6): 476 

  26. Sameen, M. I. and B. Pradhan, 2017b. A Two-Stage Optimization Strategy for Fuzzy Object-Based Analysis Using Airborne LiDAR and High- Resolution Orthophotos for Urban Road Extraction, Journal of Sensors. 

  27. Saxe, A., P.W. Koh, Z. Chen, M. Bhand, B. Suresh, and A.Y Ng, 2011. On random weights and unsupervised feature learning, Proc. of the 28th international conference on machine learning (ICML-11), Bellevue, WA, Jun. 28-Jul. 2, pp. 1089-1096 

  28. Shi, W., Z. Miao, and J. Debayle, 2014. An integrated method for urban main-road centerline extraction from optical remotely sensed imagery, IEEE Transactions on Geoscience and Remote Sensing, 52(6): 3359-3372 

  29. Sohail, M., D.A.C. Maunder, and S. Cavill, 2006. Effective regulation for sustainable public transport in developing countries, Transport Policy, 13(3): 177-190 

  30. Unsalan, C. and B. Sirmacek, 2012. Road network detection using probabilistic and graph theoretical methods, IEEE Transactions on Geoscience and Remote Sensing, 50(11): 4441-4453 

  31. Vitor, G.B., D.A. Lima, A.C. Victorino, and J.V. Ferreira, 2013. A 2D/3D vision based approach applied to road detection in urban environments, Proc. of 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast City, Australia, Jun. 23-26, pp. 952-957. 

  32. Wang, J., J. Song, M. Chen, and Z. Yang, 2015. Road network extraction: A neural-dynamic framework based on deep learning and a finite state machine, International Journal of Remote Sensing, 36(12): 3144-3169 

  33. Wegner, J. D., J.A. Montoya-Zegarra, and K. Schindler, 2013. A higher-order CRF model for road network extraction, Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, Jun. 23-28, pp. 1698-1705 

  34. Weihs, C., K. Luebke, and I. Czogiel, 2006. Response surface methodology for optimizing hyper parameters, Universitat Dortmund, Dortmund, Germany 

  35. Xie, X., K.B.Y. Wong, H. Aghajan, P. Veelaert, and W. Philips, 2016. Road network inference through multiple track alignment, Transportation Research Part C: Emerging Technologies, 72: 93-108 

  36. Yang, B., L. Fang, Q. Li, and J. Li, 2012. Automated extraction of road markings from mobile LiDAR point clouds, Photogrammetric Engineering & Remote Sensing, 78(4): 331-338 

  37. Zeyer, A., P. Doetsch, P. Voigtlaender, R. Schluter, and H. Ney, 2017. A comprehensive study of deep bidirectional LSTM RNNs for acoustic modeling in speech recognition, Proc. of Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference, New Orleans, LA, Mar. 5-9, pp. 2462-2466 

  38. Zhan, C., 1993. A hybrid line thinning approach, Proc. of Autocarto-conference-, ASPRS American society for photogrammetry and remote sensing, Bethesda, MD, p. 396 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로