$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 중학생의 과학 그래프 구성에 관한 문제 해결 과정 연구
A Study on Middle School Students' Problem Solving Processes for Scientific Graph Construction 원문보기

한국과학교육학회지 = Journal of the Korean association for science education, v.39 no.5, 2019년, pp.655 - 668  

이재원 (서울대학교) ,  박가영 (서울대학교) ,  노태희 (서울대학교)

초록
AI-Helper 아이콘AI-Helper

이 연구에서는 중학생들의 과학 그래프 구성 과정을 문제 해결의 관점에서 심층적으로 조사하였다. 중학교 3학년 학생 10명이 연구에 참여하였으며, 이들은 앙금 생성 반응을 묘사한 그림 자료를 바탕으로 과학 그래프를 구성하였다. 학생들이 그래프를 구성할 때 거치는 사고 과정을 심층적으로 조사하기 위하여 발성사고법을 활용하였고, 그래프 구성 과정에 대한 녹화 및 반구조화된 면담을 실시하였다. 연구 결과, 학생들의 과학 그래프 구성 유형은 사용한 문제 해결 전략과 활용한 표상의 수준에 따라 네 가지 유형으로 구분할 수 있었다. 구조적 전략을 사용한 학생들은 그래프의 목표 개념에 대한 명제적 지식을 바탕으로 자료를 분석하고 경향성을 파악함으로써 활용한 표상의 수준과 무관하게 과학 그래프 구성에 성공하였다. 임의 전략-고차원 표상 유형의 학생들은 다양한 표상을 활용해 자료의 특징을 체계적으로 분석하고 자신이 구성한 그래프의 의미를 과학적 맥락에서 검토하는 과정을 거치며 과학 그래프 구성에 성공할 수 있었다. 반면, 임의전략-저차원 표상 유형의 학생들은 단순히 점을 연결하는 방식으로 그래프를 구성하였고, 과학적 맥락에 대한 고려 없이 그래프 구성 과정만을 점검하는 수준에 머물며 올바른 과학 그래프 구성에 실패하였다. 연구 결과를 바탕으로 학생들의 과학 그래프 구성 능력을 효과적으로 함양하는 방안을 제안하였다.

Abstract AI-Helper 아이콘AI-Helper

In this study, we investigated the middle school students' processes of scientific graph construction from the perspective of the problem solving process. Ten 9th graders participated in this study. They constructed a scientific graph based on pictorial data depicting precipitation reaction. The thi...

주제어

표/그림 (5)

질의응답

핵심어 질문 논문에서 추출한 답변
과학 교과에서 정량적 문제 제시의 문제점은? , 1996; Park & Cho, 2005). 이러한 정량적 문제에서는 학생들이 개념을 이해하지 못하더라도 암기한 공식에 값을 대입하는 경우와 같이 간단한 알고리즘을 이용하여 문제를 해결하는 경우가 많았다(Chiu, 2001; Jeon 1999; Zoller, Dori, & Lubezky, 2002). 그러나 과학 그래프 구성 문제는 문제와 관련된 원리, 공식, 개념 등에 관한 명제적 지식과 축, 기울기, 변수 등 그래프 구성 요소에 관한 절차적 지식을 아우르는 통합적 문제 해결력을 요구하므로(Park, 2002), 정량적 문제와는 달리 단순히 알고리즘을 이용해서는 문제 해결에 성공하기 어렵다.
그래프는 무엇인가? 그래프는 자료를 시각화하여 표현하는 하나의 방법으로, 과학 교과에서는 실험을 통해 얻은 자료의 전체적인 특징과 경향성을 분석하거나 그래프의 목표 개념을 이해하는 도구로서 중요한 역할을 한다(Dori & Sasson, 2008; Kim, Ko, & Kim, 2005). 그래프의 활용 방식은 크게 그래프의 의미를 이해하는 해석과 자료를 그래프로 표현하는 구성으로 나눌 수 있다(Seçken & Yörük, 2012).
그래프의 구성을 위해 필요한 능력은? 그래프의 활용 방식은 크게 그래프의 의미를 이해하는 해석과 자료를 그래프로 표현하는 구성으로 나눌 수 있다(Seçken & Yörük, 2012). 이 중 그래프의 구성은 과학 탐구의 기본이 되는 자료의 측정, 분류, 예측, 전환 등의 활동을 수반하며, 공간지각력, 논리적 사고력, 과학적 사고력, 추론 능력 등의 종합적인 활용을 요구하므로 그래프의 해석보다 고차원적인 활동이라 할 수 있다(Berg & Smith, 1994; Canham & Hegarty, 2010; Friel, Curcio, & Bright, 2001; Hipkins, 2011). 이에 학생들의 그래프 구성 수준(Kim & Kim, 2002; Lim, Kim, & Kim, 2010; Ploetzner et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (54)

  1. Atwater, M. M., & Alick, B. (1990). Cognitive development and problem solving of Afro-American students in chemistry. Journal of Research in Science Teaching, 27(2), 157-172. 

  2. Beaumont-Walters, Y., & Soyibo, K. (2001). An analysis of high school students' performance on five integrated science process skills. Research in Science & Technological Education, 19(2), 133-145. 

  3. Beichner, R. J. (1994). Testing student interpretation of kinematics graphs. American Journal of Physics, 62(8), 750-762. 

  4. Berg, C. A., & Smith, P. (1994). Assessing students' abilities to construct and interpret line graphs: Disparities between multiple-choice and freeresponse instruments. Science Education, 78(6), 527-554. 

  5. Bing, T. J., & Redish, E. F. (2006). The cognitive blending of math and physics knowledge. In Proceedings of the 2006 Physics Education Research Conference, Syracuse, NY, USA. 

  6. Bing, T. J., & Redish, E. F. (2009). Analyzing problem solving using math in physics: Epistemological framing via warrants. Physical Review Special Topics-Physics Education Research, 5(2), 020108. 

  7. Brasell, H. M. (1990). Graphs, graphing, and graphers. What Research Says to the Science Teacher, 6, 69-85. 

  8. Byun, T. (2012). An understanding of students' physics problem solving processes by using house model. Doctoral dissertation, Seoul National University, Seoul. 

  9. Canham, M., & Hegarty, M. (2010). Effects of knowledge and display design on comprehension of complex graphics. Learning and Instruction, 20 (2), 155-166. 

  10. Chiu, M.-H. (2001). Algorithmic problem solving and conceptual understanding of chemistry by students at a local high school in Taiwan. Proceedings of the National Science Council, Republic of China Part D: Mathematics, Science and Technology Education, 11(1), 20-38. 

  11. Cho, S. (1993). A comparison of students' responses to everyday and scientific context problems about the particulate nature of matter. Master's thesis, Seoul National University, Seoul. 

  12. Choi, J., & Heo, H. (2013). A study on formation of the process-object perspective of function using excel to specialized high school math underachievers. The Korea Society of Educational Studies in Mathematics, 23(2), 213-235. 

  13. Cooper, M. M., Grove, N., Underwood, S. M., & Klymkowsky, M. W. (2010). Lost in Lewis structures: An investigation of student difficulties in developing representational competence. Journal of Chemical Education, 87(8), 869-874. 

  14. Dori, Y. J., & Sasson, I. (2008). Chemical understanding and graphing skills in an honors case-based computerized chemistry laboratory environment: The value of bidirectional visual and textual representations. Journal of Research in Science Teaching, 45(2), 219-250. 

  15. Ferguson, L. E., Braten, I., & Stromso, H. I. (2012). Epistemic cognition when students read multiple documents containing conflicting scientific evidence: A think-aloud study. Learning and Instruction, 22(2), 103-120. 

  16. Friel, S. N., Curcio, F. R., & Bright, G. W. (2001). Making sense of graphs: Critical factors influencing comprehension and instructional implications. Journal for Research in Mathematics Education, 32(2), 124-158. 

  17. Gabel, D. L., Sherwood, R. D., & Enochs, L. (1984). Problem-solving skills of high school chemistry students. Journal of Research in Science Teaching, 21(2), 221-233. 

  18. Gultepe, N. (2016). Reflections on high school students' graphing skills and their conceptual understanding of drawing chemistry graphs. Educational Sciences: Theory and Practice, 16(1), 53-81. 

  19. Hill, M., & Sharma, M. D. (2015). Students' representational fluency at university: A cross-sectional measure of how multiple representations are used by physics students using the representational fluency survey. Eurasia Journal of Mathematics, Science & Technology Education, 11(6), 1633-1655. 

  20. Hipkins, R. (2011). Challenges with graph interpretation: A review of the literature. Studies in Science Education, 47(2), 183-210. 

  21. Hong, M. (1995). Influence of characteristics of problems and problem solvers on chemistry problem solving. Doctoral dissertation, Seoul National University, Seoul. 

  22. Hong, M., & Park, Y. (1994). Analysis of characteristics of problem solving process in gas phase problems of college students. Journal of the Korean Association for Science Education, 14(2), 143-158. 

  23. Hsu, L., Brewe, E., Foster, T. M., & Harper, K. A. (2004). Resource letter RPS-1: Research in problem solving. American Journal of Physics, 72(9), 1147-1156. 

  24. Ibrahim, B., & Rebello, N. S. (2012). Representational task formats and problem solving strategies in kinematics and work. Physical Review Special Topics-Physics Education Research, 8(1), 010126. 

  25. Jeon, K. (1999). Problem solving strategy and paired think aloud problem solving: Instructional effect and small group problem solving process in chemistry class. Doctoral dissertation, Seoul National University, Seoul. 

  26. Kim, T. S., & Kim, B.-K. (2002). The comparison of graphing abilities of pupils in grades 7 to 12 based on TOGS(The test of graphing in science). Journal of the Korean Association for Science Education, 22(4), 768-778. 

  27. Kim, T. S., Ko, S. K., & Kim, B. K. (2005). Relationships of graphing ability to science-process skills and academic achievement of high school students. Journal of the Korean Association for Science Education, 25(5), 624-633. 

  28. Kim, Y., Choi, G., & Noh, T. (2009). High school students' errors in constructing and interpreting science graph. Journal of the Korean Association for Science Education, 29(8), 978-989. 

  29. Kim, Y., Moon, S., Kang, H., & Noh, T. (2009). Analysis of the types of errors in science graph construction processes of middle school students. Journal of the Korean Association for Science Education, 29(2), 168-178. 

  30. Kohl, P. B., & Finkelstein, N. D. (2008). Patterns of multiple representation use by experts and novices during physics problem solving. Physical Review Special Topics-Physics Education Research, 4(1), 010111. 

  31. Kwon, J., & Lee, S. (1988). A Comparative analysis of expert's and novice's thinking processes in solving physics problems. A Journal of the Korean Association for Science Education, 8(1), 43-55. 

  32. Lapp, D. A., & Cyrus, V. F. (2000). Using data-collection devices to enhance students' understanding. Mathematics Teacher, 93(6), 504-510. 

  33. Larkin, J. H. (1978). Problem solving in physics: Structure, process, and learning. In J. M. Scandura & C. J. Brainerd (Eds.), Structural/process models of complex human behavior. (pp. 445-458). The Netherlands: Sijthoff & Noordhoff. 

  34. Larkin, J. H. (1981). Cognition of learning physics. American Journal of Physics, 49(6), 534-541. 

  35. Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Models of competence in solving physics problems. Cognitive Science, 4(4), 317-345. 

  36. Lee, H., Ryu, H., & Chang, K. (2009). Investigation to teach graphical representations and their interpretations of functions to fifth graders. The Korea Society of Educational Studies in Mathematics, 11(1), 131-145. 

  37. Lemke, J. (1998). Multimedia literacy demands of the scientific curriculum. Linguistics and Education, 10(3), 247-271. 

  38. Lim, H.-M., Kim, Y.-H., & Kim, Y.-S. (2010). Female high school students' ability to construct graphs in biology. The Korean Society of Biology Education, 38(2), 342-352. 

  39. Madden, S. P., Jones, L. L., & Rahm, J. (2011). The role of multiple representations in the understanding of ideal gas problems. Chemistry Education Research and Practice, 12(3), 283-293. 

  40. McKenzie, D. L., & Padilla, M. J. (1986). The construction and validation of the test of graphing in science(TOGS). Journal of Research in Science Teaching, 23(7), 571-579. 

  41. Meredith, D. C., & Marrongelle, K. A. (2008). How students use mathematical resources in an electrostatics context. American Journal of Physics, 76(6), 570-578. 

  42. Noh, T., Jeon K., Han, I., & Kim, C. (1996). Comparison of chemistry problem solving behaviors in the aspects of cognitive developmental level of student and context of problem. Journal of the Korean Association for Science Education, 16(4), 389-400. 

  43. Park, H.-K., & Kwon, J.-S. (1994). A study on students' thinking processes in solving physics problems. Journal of the Korean Association for Science Education, 14(1), 85-102. 

  44. Park, J. (2018). Features of elementary students' intuitive thinking during the problem solving activities on thermal phenomena: Focusing on the processes of emergence and elaboration. Doctoral dissertation, Seoul National University, Seoul. 

  45. Park, Y. (2002). Teaching and learning of physics problem solving[물리문제해결 학습과 지도]. In I. Kim, J. Park, K. Choi, J. Song & Y. Park (Eds.), General physics education II[물리교육학 총론 II]. (pp. 69-136). Seoul: Bookshill. 

  46. Park, Y., & Cho, Y.-K. (2005). Analysis of physics problem solving processes of high school students to qualitative and quantitative problems. Journal of the Korean Association for Science Education, 25(4), 526-532. 

  47. Ploetzner, R., Lippitsch, S., Galmbacher, M., Heuer, D., & Scherrer, S. (2009). Students' difficulties in learning from dynamic visualisations and how they may be overcome. Computers in Human Behavior, 25(1), 56-65. 

  48. Potgieter, M., Harding, A., & Engelbrecht, J. (2008). Transfer of algebraic and graphical thinking between mathematics and chemistry. Journal of Research in Science Teaching, 45(2), 197-218. 

  49. Rau, M. A. (2015). Enhancing undergraduate chemistry learning by helping students make connections among multiple graphical representations. The Royal Society of Chemistry, 16(3), 654-669. 

  50. Secken, N., & Yoruk, N. Z. (2012). An analysis of relations between concerns about the use of graphs in chemistry classes and multiple intelligences in terms of different variables. International Journal of New Trends in Arts, Sports & Science Education, 1(2), 142-156. 

  51. Tuminaro, J., & Redish, E. F. (2004). Understanding students' poor performance on mathematical problem solving in physics. In Proceedings of the 2004 Physics Education Research Conference, University of Maryland, MD, USA. 

  52. Vermaat, H., Terlouw, C., Dijkstra, S., & Vermaat, J. H. (2003). Multiple representations in web-based learning of chemistry concepts. In Proceedings of the 84th Annual Meeting of the American Educational Research Association, San Francisco, CA, USA. 

  53. Yang, S. J., & Jang, M. D. (2012). Analysis of children's constructing and interpreting of a line graph in science. Journal of Korean Elementary Science Education, 31(3), 321-333. 

  54. Zoller, U., Dori, Y., & Lubezky, A. (2002). Algorithmic, LOCS and HOCS (chemistry) exam questions: Performance and attitudes of college students. International Journal of Science Education, 24(2), 185-203. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로