$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Efficiency improvement of a DC/DC converter using LTCC substrate 원문보기

ETRI journal, v.41 no.6, 2019년, pp.811 - 819  

Jung, Dong Yun (ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ,  Jang, Hyun Gyu (ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ,  Kim, Minki (ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ,  Park, Junbo (ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ,  Jun, Chi-Hoon (ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ,  Park, Jong Moon (ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ,  Ko, Sang Choon (ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute)

Abstract AI-Helper 아이콘AI-Helper

We propose a substrate with high thermal conductivity, manufactured by the low-temperature co-fired ceramic (LTCC) multilayer circuit process technology, as a new DC/DC converter platform for power electronics applications. We compare the reliability and power conversion efficiency of a converter us...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • This paper discusses the applicability of a substrate with high thermal conductivity fabricated with LTCC process technology as a new DC/DC converter platform in power electronics applications. It also details the design of a 48‐ to‐12 V converter, provides an efficiency comparison to four other converters, and describes the results of a reliability test of the proposed LTCC‐based nonsynchronous buck converter.
본문요약 정보가 도움이 되었나요?

참고문헌 (21)

  1. D. Y. Jung et al., Power semiconductor SMD package embedded in multilayered ceramic for low switching loss, ETRI J. 39 (2017), 866-873. 

  2. D. Y. Jung et al., Multi-layer substrate based power semiconductor package for low parasitic inductance and high heat transfer, in Asia-Pacific Workshop Fundam. Applicat. Adv. Semicond. Devices (AWAD), Hakodate, Japan, July 2016, pp. 283-285. 

  3. A. Ball et al., System design of 3D integrated non-isolated point of load converter, in Annu. IEEE Appl. Power Electron. Conf. Exposition, Austin, TX, USA, Feb. 2008, pp. 181-186, doi: 10.1109/APEC.2008.4522719. 

  4. Q. Li et al., High inductance density low-profile inductor structure for integrated point-of-load converter, in Annu. IEEE Appl. Power Electron. Conf. Exposition, Washington, DC, USA, Feb. 2009, pp. 1011-1017, doi: 10.1109/APEC.2009.4802786. 

  5. Q. Li, Y. Dong, and F. C. Lee, High-density low-profile coupled inductor design for integrated point-of-load converters, IEEE Trans. Power Electron. 28 (2013), 547-554. 

  6. Y. Su et al., Low profile LTCC inductor substrate for multi-MHz integrated POL converter, in Annu. IEEE Appl. Power Electron. Conf. Exposition (APEC), Orlando, FL, USA, Feb. 2012, pp. 1331-1337, doi: 10.1109/APEC.2012.6165992. 

  7. C. Nan, and R Ayyanar, A 1MHz bi-directional soft-switching DCDC converter with planar coupled inductor for dual voltage automotive systems, in IEEE Appl. Power Electron. Conf. Exposition (APEC), Long Beach, CA, USA, Mar. 2016, pp. 432-439, doi: 10.1109/APEC.2016.7467908. 

  8. T. Kim and S. Kwak, A flexible voltage bus converter for the 48-/12-V dual supply system in electrified vehicles, IEEE Trans. Veh. Technol. 66 (2017), 2010-2018. 

  9. B. Li et al., A high frequency high efficiency GaN based bi-directional 48V/12V converter with PCB coupled inductor for mild hybrid vehicle, in IEEE Workshop Wide Bandgap Power Devices Applicat., Atlanta, GA, USA, 2018, pp. 204-211, doi: 10.1109/WiPDA.2018.8569067. 

  10. M. H. Ahmed et al., 48-V voltage regulator module with PCB winding matrix transformer for future data centers, IEEE Trans. Ind. Electron. 64 (2017), 9302-9310. 

  11. D. Reusch, S. Biswas, and Y. Zhang, System optimization of a high power density non-isolated intermediate bus converter for 48 V server applications, in E Appl. Power Electron. Conf. Exposition, San Antonio, TX, USA, Mar. 2018, pp. 2191-2197, doi: 10.1109/APEC.2018.8341320. 

  12. C. Fei et al., Two-stage 48 V-12 V/6 V-1.8 V voltage regulator module with dynamic bus voltage control for light-load efficiency improvement, IEEE Trans. Power Electron. 32 (2017), 5628-5636. 

  13. B. Hughes et al., Increasing the switching frequency of GaN HFET converters, in IEEE Int. Electr. Devices Meeting (IEDM), Washington, DC, USA, Dec. 2015, pp. 16.7.1-16.7.4. 

  14. R. Mitovaet al., Current trends for GaN on Si power devices for industrial applications, in Int. Conf. Integr. Electron. Syst. (CIPS), Nuremberg, Germany, Mar. 2016, pp. 1-11. 

  15. W. Zhang et al., A new package of high-voltage cascode gallium nitride device for megahertz operation, IEEE Trans. Power Electron. 31 (2016), 1344-1353. 

  16. I. Omura et al., Gallium nitride power HEMT for high switching frequency power electronics, in Int. Workshop Phys. Semicond. Devices, Mumbai, India, Dec. 2007, pp. 781-786. 

  17. D. Y. Jung et al., Design and evaluation of cascode GaN FET for switching power conversion systems, ETRI J. 39 (2017), 62-68. 

  18. M. Kim et al., Pulse-mode dynamic Ron measurement of large-scale high-power AlGaN/GaN HFET, ETRI J. 39 (2017), 292-299. 

  19. W. Zhang et al., High frequency high current point of load modules with integrated planar inductors, in IEEE Electron. Compon. Technol. Conf. (ECTC), Orlando, FL, USA, May 2014, pp. 504-511, doi: 10.1109/ECTC.2014.6897331 

  20. D. Han, and B. Sarlioglu, Deadtime effect on GaN-based synchronous boost converter and analytical model for optimal deadtime selection, IEEE Trans. Power Electron. 31 (2016), 601-612. 

  21. J. Wang, Y. Li, and Y. Han, Integrated modular motor drive design with GaN power FETs, IEEE Trans. Ind. Applicat. 51 (2015), 3198-3207. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로