$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] GIS와 기계학습을 이용한 지하수 가능성도 작성 연구 현황
Status of Groundwater Potential Mapping Research Using GIS and Machine Learning 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.36 no.6 pt.1, 2020년, pp.1277 - 1290  

이사로 (한국지질자원연구원(KIGAM) 지오플랫폼연구본부)

초록
AI-Helper 아이콘AI-Helper

지표수와 지하수로 이루어진 수자원은 세계적으로 가장 중요한 천연자원 중 하나로 여겨진다. 지난 세기 이후 급속한 산업화와 급증하는 인구로 인해, 생활용, 산업용, 농업용수 수요가 급증하고 있으며, 이에 대한 지하수 수요도 급증하고 있다. 따라서 지하수에 대한 지속 가능한 개발과 관리를 위해서는 정확한 위치기반의 지하수 가능성도 작성이 필수적이다. 최근에는 기계학습지리정보시스템 통합이 지하수 가능성도 작성에 효과적인 방법이 되고 있다. 이러한 통합접근법의 현황 파악을 위해 6년(2015~2020년) 동안 94편의 직접 관련 논문에 대한 체계적 검토를 실시했다. 문헌 검토에 따르면, 매년 발간되는 연구의 수는 시간이 지남에 따라 급격히 증가했다. 전체 연구 분야는 15개국에 걸쳐 있으며, 85%의 연구가 이란, 인도, 중국, 한국, 이라크에 집중되었다. 지하수 산출 가능성 조사에는 20개의 변수가 자주 사용된 것으로 조사되었으며, 이 중 지형고도, 경사, 경사방향, 지형습도지수, 지질, 토지 이용 피복, 하천 밀도, 강과의 거리, 강우량 등이 자주 사용되는 것으로 나타났다. 기계학습 모델에 있어 랜덤 포레스트, 서포트벡터머신, 부스트 회귀트리 등의 방법이 많이 사용되었다. 이러한 문헌 연구는 최적의 결과를 위해 지하수 가능성도를 저비용 대체물이 아닌 현장 작업을 보완하는 도구로 사용해야 한다는 것을 보여준다. 마지막으로, 향후, 지하수 가능성도 작성의 표준화 및 정확성을 개선하기 위해 더 많은 연구가 진행되어야 할 것이다.

Abstract AI-Helper 아이콘AI-Helper

Water resources which is formed of surface and groundwater, are considered as one of the pivotal natural resources worldwide. Since last century, the rapid population growth as well as accelerated industrialization and explosive urbanization lead to boost demand for groundwater for domestic, industr...

Keyword

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 그러므로 시간과 비용을 줄이기 위해서는 지하수 산출 가능성 지역을 기존 정보를 최대한 활용할 수 있는 데이터 기반의 접근법을 필요로 한다. 이에 지리정보시스템(GIS)과 기계학습 모델을 결합하여, 매우 높은 효율로 지하수가 산출 가능 구역을 예측할 수 있는 지하수 가능성도 작성 방법론이 제시되었다.
  • 본 연구에서 증명될 것처럼, 지하수 가능성 지도에 새로운 방법을 적용하는 것에 대한 관심이 최근 몇 년 동안 급격히 증가했다. 따라서, 본 연구에서는 지난 10년 동안 GIS를 이용하여 지하수 가능성도 작성 방법에 대한 최신 연구를 정리 분석하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (79)

  1. Ahmad, I., M. A. Dar, T. G. Andualem, and A. H. Teka, 2020. GIS-based multi-criteria evaluation of groundwater potential of the Beshilo River basin, Ethiopia, Journal of African Earth Sciences, 164: 103747. 

  2. Al-Abadi, A. M. and S. Shahid, 2015. A comparison between index of entropy and catastrophe theory methods for mapping groundwater potential in an arid region, Environmental Monitoring and Assessment, 187(9): 4801. 

  3. Al-Abadi, A.M. and S. Shahid, 2016. Spatial mapping of artesian zone at Iraqi southern desert using a GIS-based random forest machine learning model, Modeling Earth Systems and Environment, 2(2): 96. 

  4. Al-Abadi, A. M. and J. J. Alsamaani, 2020. Spatial analysis of groundwater flowing artesian condition using machine learning techniques, Groundwater for Sustainable Development, 11: 100418. 

  5. Al-Abadi, A. M., A. A. Al-Temmeme, and M. A. Al-Ghanimy, 2016. A GIS-based combining of frequency ratio and index of entropy approaches for mapping groundwater availability zones at Badra-Al Al-Gharbi-Teeb areas, Iraq, Sustainable Water Resources Management, 2(3): 265-283. 

  6. Al-Fugara, A., H. R. Pourghasemi, A .R. Al-Shabeeb, M. Habib, R. Al-Adamat, H. Al-Amoush, and A. L. Collins, 2020. A comparison of machine learning models for the mapping of groundwater spring potential, Environmental Earth Sciences, 79(10): 206. 

  7. Al-Ruzouq, R., A. Shanableh, T. Merabtene, M. Siddique, M. A. Khalil, A. Idris, and E. Almulla, 2019. Potential groundwater zone mapping based on geo-hydrological considerations and multi-criteria spatial analysis: North UAE, CATENA, 173: 511-524. 

  8. Altafi Dadgar, M., P. Zeaieanfirouzabadi, M. Dashti, and R. Porhemmat, 2017. Extracting of prospective groundwater potential zones using remote sensing data, GIS, and a probabilistic approach in Bojnourd basin, NE of Iran, Arabian Journal of Geosciences, 10(5): 114. 

  9. Andualem, T. G. and G. G. Demeke, 2019. Groundwater potential assessment using GIS and remote sensing: A case study of Guna tana landscape, upper blue Nile Basin, Ethiopia, Journal of Hydrology: Regional Studies, 24: 100610. 

  10. Arabameri, A., S. Lee, J. P. Tiefenbacher, and P.T.T. Ngo, 2020. Novel Ensemble of MCDM-Artificial Intelligence Techniques for Groundwater-Potential Mapping in Arid and Semi-Arid Regions (Iran), Remote Sensing, 12(3): 490. 

  11. Arabameri, A., J. Roy, S. Saha, T. Blaschke, O. Ghorbanzadeh, and D. Tien Bui, 2019a. Application of Probabilistic and Machine Learning Models for Groundwater Potentiality Mapping in Damghan Sedimentary Plain, Iran, Remote Sensing, 11(24): 3015. 

  12. Arabameri, A., Kh. Rezaei, A. Cerda, L. Lombardo, and J. Rodrigo-Comino, 2019b. GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM (Multiplecriteria decision analysis) approaches, Science of The Total Environment, 658: 160-177. 

  13. Arulbalaji, P., D. Padmalal, and K. Sreelash, 2019. GIS and AHP Techniques Based Delineation of Groundwater Potential Zones: a case study from Southern Western Ghats, India, Scientific Reports, 9(1): 2082. 

  14. Avand, M., S. Janizadeh, D. Tien Bui, V. H. Pham, P. T. T. Ngo, and V.-H. Nhu, 2020. A tree-based intelligence ensemble approach for spatial prediction of potential groundwater, International Journal of Digital Earth, 24: 1-22. 

  15. Benjmel, K., F. Amraoui, S. Boutaleb, M. Ouchchen, A. Tahiri, and A. Touab, 2020. Mapping of Groundwater Potential Zones in Crystalline Terrain Using Remote Sensing, GIS Techniques, and Multicriteria Data Analysis (Case of the Ighrem Region, Western Anti-Atlas, Morocco), Water, 12(2): 471. 

  16. Biswas, S., B. P. Mukhopadhyay, and A. Bera, 2020. Delineating groundwater potential zones of agriculture dominated landscapes using GIS based AHP techniques: a case study from Uttar Dinajpur district, West Bengal, Environmental Earth Sciences, 79(12): 302. 

  17. Chen, W., H. Li, E. Hou, S. Wang, G. Wang, M. Panahi, T. Li, T. Peng, C. Guo, C. Niu, L. Xiao, J. Wang, X. Xie, and B. Ahmad, 2018b. GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models, Science of The Total Environment, 634: 853-867. 

  18. Chen, W., Y. Li, P. Tsangaratos, H. Shahabi, I. Ilia, W. Xue, and H. Bian, 2020. Groundwater Spring Potential Mapping Using Artificial Intelligence Approach Based on Kernel Logistic Regression, Random Forest, and Alternating Decision Tree Models, Applied Sciences, 10(2): 425. 

  19. Chen, W., W. Chen, M. Panahi, K. Khosravi, H. R. Pourghasemi, F. Rezaie, and D. Parvinnezhad, 2019c. Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization, Journal of Hydrology, 572: 435-448. 

  20. Chen, W., B. Pradhan, S. Li, H. Shahabi, H. M. Rizeei, E. Hou, and S. Wang, 2019a. Novel Hybrid Integration Approach of Bagging-Based Fisher's Linear Discriminant Function for Groundwater Potential Analysis, Natural Resources Research, 28(4): 1239-1258. 

  21. Chen, W., P. Tsangaratos, I. Ilia, Z. Duan, and X. Chen, 2019b. Groundwater spring potential mapping using population-based evolutionary algorithms and data mining methods, Science of The Total Environment, 684: 31-49. 

  22. Das, S., 2019. Comparison among influencing factor, frequency ratio, and analytical hierarchy process techniques for groundwater potential zonation in Vaitarna basin, Maharashtra, India, Groundwater for Sustainable Development, 8: 617-629. 

  23. Das, S. and S. D. Pardeshi, 2018. Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: a study of Pravara basin, Maharashtra, India, Applied Water Science, 8(7): 197. 

  24. Duan, H., Z. Deng, F. Deng, and D. Wang, 2016. Assessment of Groundwater Potential Based on Multicriteria Decision Making Model and Decision Tree Algorithms, Mathematical Problems in Engineering, 1: 1-11. 

  25. Falah, F., S. Ghorbani Nejad, O. Rahmati, M. Daneshfar, and H. Zeinivand, 2017. Applicability of generalized additive model in groundwater potential modelling and comparison its performance by bivariate statistical methods, Geocarto International, 32(10): 1069-1089. 

  26. Ghorbani Nejad, S., F. Falah, M. Daneshfar, A. Haghizadeh, and O. Rahmati, 2017. Delineation of groundwater potential zones using remote sensing and GIS-based data-driven models, Geocarto International, 21: 167-187. 

  27. Golkarian, A. and O. Rahmati, 2018. Use of a maximum entropy model to identify the key factors that influence groundwater availability on the Gonabad Plain, Iran, Environmental Earth Sciences, 77(10): 369-369. 

  28. Golkarian, A., S. A. Naghibi, B. Kalantar, and B. Pradhan, 2018. Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS, Environmental Monitoring and Assessment, 190(3): 149. 

  29. Guru, B., K. Seshan, and S. Bera, 2017. Frequency ratio model for groundwater potential mapping and its sustainable management in cold desert, India, Journal of King Saud University - Science, 29(3): 333-347. 

  30. Haghizadeh, A., D. D. Moghaddam, and H. R. Pourghasemi, 2017. GIS-based bivariate statistical techniques for groundwater potential analysis (an example of Iran), Journal of Earth System Science, 126(8): 109. 

  31. Hou, E., J. Wang, and W. Chen, 2018. A comparative study on groundwater spring potential analysis based on statistical index, index of entropy and certainty factors models, Geocarto International, 33(7): 754-769. 

  32. Kalantar, B., H. A. Al-Najjar, B. Pradhan, V. Saeidi, A. A. Halin, N. Ueda, and S. A. Naghibi, 2019. Optimized Conditioning Factors Using Machine Learning Techniques for Groundwater Potential Mapping, Water, 11(9): 1909. 

  33. Maskooni, E. K., S. A. Naghibi, H. Hashemi, and R. Berndtsson, 2020. Application of Advanced Machine Learning Algorithms to Assess Groundwater Potential Using Remote Sensing-Derived Data, Remote Sensing, 12(17): 2742. 

  34. Karimi, V., R. Khatibi, M. Ghorbani, D. Tien Bui, and S. Darbandi, 2020. Strategies for Learning Groundwater Potential Modelling Indices under Sparse Data with Supervised and Unsupervised Techniques, Water Resources Management, 34(8): 2389-2417. 

  35. Khoshtinat, S., B. Aminnejad, Y. Hassanzadeh, and H. Ahmadi, 2019. Groundwater potential assessment of the Sero plain using bivariate models of the frequency ratio, Shannon entropy and evidential belief function, Journal of Earth System Science, 128(6): 153. 

  36. Khosravi, K., M. Panahi, and D. Tien Bui, 2018. Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization, Hydrology and Earth System Sciences, 22(9): 4771-4792. 

  37. Kim, J. C., H. S. Jung, and S. Lee, 2019. Spatial Mapping of the Groundwater Potential of the Geum River Basin Using Ensemble Models Based on Remote Sensing Images, Remote Sensing, 11(19): 2285. 

  38. Kordestani, M., S. A. Naghibi, H. Hashemi, K. Ahmadi, B. Kalantar, and B. Pradhan, 2019. Groundwater potential mapping using a novel data-mining ensemble model, Hydrogeology Journal, 27(1): 211-224. 

  39. Lee, S., S. M. Hong, and H. S. Jung, 2018. GIS-based groundwater potential mapping using artificial neural network and support vector machine models: the case of Boryeong city in Korea, Geocarto International, 33(8): 847-861. 

  40. Lee, S., Y. Hyun, S. Lee, and M.-J. Lee, 2020. Groundwater Potential Mapping Using Remote Sensing and GIS-Based Machine Learning Techniques, Remote Sensing, 12(7): 1200. 

  41. Mallick, J., R. A. Khan, M. Ahmed, S. Alqadhi, M. Alsubih, I. Falqi, and M. A. Hasan, 2019. Modeling Groundwater Potential Zone in a Semi-Arid Region of Aseer Using Fuzzy-AHP and Geoinformation Techniques, Water, 11(12): 2656. 

  42. Martinez-Santos, P. and P. Renard, 2019. Mapping Groundwater Potential Through an Ensemble of Big Data Methods, Groundwater, 58(4): 583-597. 

  43. Miraki, S., S. Hedayati Zanganeh, K. Chapi, V. Singh, A. Shirzadi, H. Shahabi, and B. T. Pham, 2019. Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach, Water Resources Management, 33(1): 281-302. 

  44. Mogaji, K. A., H. S. Lim, and K. Abdullah, 2015. Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster-Shafer model, Arabian Journal of Geosciences, 8(5): 3235-3258. 

  45. Mousavi, S. M., A. Golkarian, S. A. Naghibi, B. Kalantar, and B. Pradhan, 2016. GIS-based Groundwater Spring Potential Mapping Using Data Mining Boosted Regression Tree and Probabilistic Frequency Ratio Models in Iran, Geoscienses, 3(1): 91-115. 

  46. Mukherjee, I. and U. K. Singh, 2020. Delineation of groundwater potential zones in a drought-prone semi-arid region of east India using GIS and analytical hierarchical process techniques, CATENA, 194: 104681. 

  47. Naghibi, S. A. and H. R. Pourghasemi, 2015. A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping, Water Resources Management, 29(14): 5217-5236. 

  48. Naghibi, S. A. and M. Moradi Dashtpagerdi, 2016. Evaluation of four supervised learning methods for groundwater spring potential mapping in Khalkhal region (Iran) using GIS-based features, Hydrogeology Journal, 25(1): 169-189. 

  49. Naghibi, S. A., H. R. Pourghasemi, and B. Dixon, 2016. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran, Environmental Monitoring and Assessment, 188(1): 44. 

  50. Naghibi, S. A., K. Ahmadi, and A. Daneshi, 2017b. Application of Support Vector Machine, Random Forest, and Genetic Algorithm Optimized Random Forest Models in Groundwater Potential Mapping, Water Resources Management, 31(9): 2761-2775. 

  51. Naghibi, S. A., H. R. Pourghasemi, and K. Abbaspour, 2018. A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS, Theoretical and Applied Climatology, 131(3): 967-984. 

  52. Naghibi, S. A., H. Hashemi, R. Berndtsson, and S. Lee, 2020. Application of extreme gradient boosting and parallel random forest algorithms for assessing groundwater spring potential using DEM-derived factors, Journal of Hydrology, 589: 125197. 

  53. Naghibi, S. A., D. D. Moghaddam, B. Kalantar, B. Pradhan, and O. Kisi, 2017a. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping, Journal of Hydrology, 548: 471-483. 

  54. Naghibi, S. A., M. Dolatkordestani, A. Rezaei, P. Amouzegari, M. Taheri Heravi, B. Kalantar, and B. Pradhan, 2019. Application of rotation forest with decision trees as base classifier and a novel ensemble model in spatial modeling of groundwater potential, Environmental Monitoring and Assessment, 191(4): 248. 

  55. Nguyen, P. T., D. H. Ha, A. Jaafari, H. D. Nguyen, T. Van Phong, N. Al-Ansari, I. Prakash, H. V. Le, and B. T. Pham, 2020a. Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam, International Journal of Environmental Research and Public Health, 17(7): 2473. 

  56. Nguyen, P. T., D. H. Ha, H. D. Nguyen, T. V. Phong, P. T. Trinh, N. Al-Ansari, H. V. Le, B. T. Pham, L. Si Ho, and I. Prakash, 2020b. Improvement of Credal Decision Trees Using Ensemble Frameworks for Groundwater Potential Modeling, Sustainability, 12(7): 2622. 

  57. Nhu, V.-H., O. Rahmati, F. Falah, S. Shojaei, N. Al-Ansari, H. Shahabi, A. Shirzadi, K. Gorski, H. Nguyen, and B. Ahmad, 2020. Mapping of Groundwater Spring Potential in Karst Aquifer System Using Novel Ensemble Bivariate and Multivariate Models, Water, 12(4): 985. 

  58. Pal, S., S. Kundu, and S. Mahato, 2020. Groundwater potential zones for sustainable management plans in a river basin of India and Bangladesh, Journal of Cleaner Production, 257: 120311. 

  59. Park, S., S. Y. Hamm, H. T. Jeon, and J. Kim, 2017. Evaluation of Logistic Regression and Multivariate Adaptive Regression Spline Models for Groundwater Potential Mapping Using R and GIS, Sustainability, 9(7): 1157. 

  60. Patra, S., P. Mishra, and S. C. Mahapatra, 2018. Delineation of groundwater potential zone for sustainable development: A case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process, Journal of Cleaner Production, 172: 2485-2502. 

  61. Paul, R. S., U. Rawat, D. SenGupta, A. Biswas, S. Tripathi, and P. Ghosh, 2020. Assessment of groundwater potential zones using multi-criteria evaluation technique of Paisuni River Basin from the combined state of Uttar Pradesh and Madhya Pradesh, India, Environmental Earth Sciences, 79(13): 340. 

  62. Pham, B. T., A. Jaafari, I. Prakash, S. K. Singh, N. K. Quoc, and D. Tien Bui, 2019. Hybrid computational intelligence models for groundwater potential mapping, CATENA, 182: 104101. 

  63. Pradhan, A. M. S., Y. Kim, and S. Shrestha, 2020. Application of deep neural network to capture groundwater potential zone in mountainous terrain, Nepal Himalaya, Environment Science and Pollution Research, 1: 1-17. 

  64. Prasad, P., V. J. Loveson, M. Kotha, and R. Yadav, 2020. Application of machine learning techniques in groundwater potential mapping along the west coast of India, GIS Science and Remote Sensing, 57(6): 735-752. 

  65. Rahmati, O. and A. M. Melesse, 2016. Application of Dempster-Shafer theory, spatial analysis and remote sensing for groundwater potentiality and nitrate pollution analysis in the semi-arid region of Khuzestan, Iran, Science of The Total Environment, 568: 1110-1123. 

  66. Rahmati, O., H. R. Pourghasemi, and A. M. Melesse, 2016. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran, CATENA, 137: 360-372. 

  67. Rahmati, O., S. A. Naghibi, H. Shahabi, D. Tien Bui, B. Pradhan, A. Azareh, E. Rafiei-Sardooi, A. N. Samani, and A. Melesse, 2018. Groundwater spring potential modelling: Comprising the capability and robustness of three different modeling approaches, Journal of Hydrology, 565: 248-261. 

  68. Rahmati, O., D. D. Moghaddam, V. Moosavi, Z. Kalantari, M. Samadi, S. Lee, and D. Tien Bui, 2019. An Automated Python Language-Based Tool for Creating Absence Samples in Groundwater Potential Mapping, Remote Sensing, 11(11): 1375. 

  69. Razandi, Y., H. R. Pourghasemi, N. S. Neisani, and O. Rahmati, 2015. Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS, Earth Science Informatics, 8(4): 867-883. 

  70. Sameen, M. I., B. Pradhan, and S. Lee, 2019. Self-Learning Random Forests Model for Mapping Groundwater Yield in Data-Scarce Areas, Natural Resources Research, 28(3): 757-775. 

  71. Tahmassebipoor, N., O. Rahmati, F. Noormohamadi, and S. Lee, 2016. Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing, Arabian Journal of Geosciences, 9(1): 79. 

  72. Termeh, S. V. R., A. Sadeghi-Niaraki, and S. M. Choi, 2019b. Groundwater Potential Mapping Using an Integrated Ensemble of Three Bivariate Statistical Models with Random Forest and Logistic Model Tree Models, Water, 11(8): 1596. 

  73. Termeh, S. V. R., K. Khosravi, M. Sartaj, S. Keesstra, F. Tsai, R. Dijksma, and B. T. Pham, 2019a. Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping, Hydrogeology Journal, 27(7): 2511-2534. 

  74. Thapa, R., S. Gupta, S .Guin, and H. Kaur, 2017. Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: a case study from Birbhum district, West Bengal, Applied Water Science, 7(7): 4117-4131. 

  75. Thapa, R., S. Gupta, A. Gupta, D. V. Reddy, and H. Kaur, 2018. Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India, Journal of hydrogeology, 26: 899-922 

  76. Tien Bui, D., A. Shirzadi, K. Chapi, H. Shahabi, B. Pradhan, B. T. Pham, V. P. Singh, W. Chen, K. Khosravi, B. Ahmad, and S. Lee, 2019. A Hybrid Computational Intelligence Approach to Groundwater Spring Potential Mapping, Water, 11(10): 2013. 

  77. Tiwari, A., A. Ahuja, B. D. Vishwakarma, and K. Jain, 2019. Groundwater Potential Zone (GWPZ) for Urban Development Site Suitability Analysis in Bhopal, India, Journal of the Indian Society of Remote Sensing, 47(11): 1793-1815. 

  78. Yousefi, S., N. Sadhasivam, H. R. Pourghasemi, H. Ghaffari Nazarlou, F. Golkar, S. Tavangar, and M. Santosh, 2020. Groundwater spring potential assessment using new ensemble data mining techniques, Measurement, 157: 107652. 

  79. Zabihi, M., H. R. Pourghasemi, Z. S. Pourtaghi, and M. Behzadfar, 2016. GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran, Environmental Earth Sciences, 75(8): 665. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로