$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

간이평가법을 이용한 지진재현주기별 부산광역시 액상화 재해 평가
Liquefaction Hazard Assessment according to Seismic Recurrence Intervals Using Simple Estimating Method in Busan City, Korea 원문보기

지질공학 = The journal of engineering geology, v.30 no.4, 2020년, pp.589 - 602  

임현지 (부산대학교 지질환경과학과) ,  정래윤 (부산대학교 지질환경과학과) ,  오동하 (부산발전연구원 도시.환경연구실) ,  강혜진 (부산대학교 지질환경과학과) ,  손문 (부산대학교 지질환경과학과)

초록
AI-Helper 아이콘AI-Helper

과거의 많은 지진 사례에서 볼 수 있듯이 액상화 현상은 부등침하를 일으키고 심한 경우 건물 파괴, 지반 함몰과 같은 심각한 피해를 유발한다. 연구지역인 부산광역시 인근에는 지진발생 가능성이 높은 단층들이 분포하며 양산단층, 동래단층, 일광단층이 도심지를 통과하고 있다. 또한 최근 발생한 경주, 포항, 일본 구마모토 지진의 영향권 내에 위치하며, 도시 내 넓은 단층곡을 따라서 두꺼운 제4기 미고결 충적층이 발달하고 해안 지역에는 해빈 퇴적물과 함께 매립지가 넓게 분포한다. 따라서 부산광역시 인근에서 대형 지진이 발생할 경우 도심지 내에 액상화로 인한 큰 피해가 예상되어, 도시 전 지역을 대상으로 지진재현주기별 액상화 발생 가능성을 평가하였다. 그 결과, 지진재현주기에 따라 정도의 차이는 존재하나 낙동강 하구 평야지대와 부산만, 수영만, 송정역 일대에서 액상화 발생 가능성이 매우 높은 것으로 예측되었다. 또한 짧은 지진재현주기일수록 부지주기에 따라 상당히 다른 결과가 도출된 반면, 재현주기가 길어질수록 부지주기에 관계없이 그 결과는 비슷한 양상을 보였다.

Abstract AI-Helper 아이콘AI-Helper

As can be seen in many earthquakes, liquefaction causes differential settlement, which sometimes produces serious damages such as building destruction and ground subsidence. There are many possible active faults near the Busan city and the Yangsan, Dongrae, and Ilgwang faults among them pass through...

주제어

표/그림 (11)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 액상화 재해도 작성방법은 여러 연구자들에 의해 개발되어왔으며, 평가방법에는 지반응답해석과 실내시험을 이용한 상세평가법과 표준관입시험(Standard Penetrate Test, SPT) N값, 콘관입시험(Cone Penetrate Test, CPT) N값, 전단파속도(Shear wave velocity, Vs) 등을 이용한 간이평가법이 있다. 이번 연구는 국토지반정보 통합 DB센터에 기구축 된 데이 터베이스를 활용하여 간이평가법에 기초한 액상화 발생 가능성을 평가하고자 하며, 지진재현주기 100년, 500년, 1,000년, 2,400년에 해당하는 지진가속도를 적용하여 액상화 재해도를 도시화하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (34)

  1. Baek, W., Choi J., 2019a, Seismic risk assessment on buried electric power tunnels with the use of liquefaction hazard map in metropolitan areas, Journal of Korean Society of Disaster and Security, 12(1), 45-56 (in Korean with English abstract). 

  2. Baek, W., Choi J., 2019b, Correlations of earthquake accelerations and LPIs for liquefaction risk mapping in Seoul & Gyeonggi-do area based on artificial scenarios, Korean Geo-Environmental Society, 20(5), 5-12 (in Korean with English abstract). 

  3. Borcherdt, R.D., 1994, Estimates of site-dependent response spectra for design (methodology and justification), Earthquake Spectra, 10(4), 617-653. 

  4. Chang, T.W., Kang, P.C., Park, S.W., Hwang, S.K., Lee, D.W., 1983, Geological report of the Busan-Gadeok sheets (1: 50,000). Korea Institute of Energy and Resources, 22 (in Korean with English abstract). 

  5. Cho, H., Kim, J.S., Son, M., Sohn, Y.K., Kim, I.S., 2011, Petrography and 40Ar/39Ar ages of volcanic rocks in the cretaceous Dadaepo basin, Busan: Accumulation time and correlation of the Dadaepo formation, Journal of the Geological Society of Korea, 47, 1-18 (in Korean with English abstract). 

  6. Chung, T.W., Iqbal, M.Z., 2017, Hypocentral depth determination of Gyeongju earthquake aftershock sequence, Geophysics and Geophysical Exploration, 20(1), 49-55 (in Korean with English abstract). 

  7. Chung, T.W., Lee, Y., Iqbal, M.Z., Jeong, J., 2018, A study of hypocentral depth of Pohang earthquake, Geophysics and Geophysical Exploration, 21(2), 125-131 (in Korean with English abstract). 

  8. Gahng, G., 2019, Characteristics of liquefaction phenomena induced by 2017. 11. 15 Pohang earthquake, MSc Thesis, Pusan National University (in Korean with English abstract). 

  9. Gihm, Y.S., Kim, S.W., Ko, K., Choi, J.H., Bae, H., Hong, P.S., Lee, Y., Lee, H., Jin, K., Choi, S.J., Kim, J.C., Choi, M.S., Lee, S.R., 2018, Paleoseismological implications of liquefaction-induced structures caused by the 2017 Pohang earthquake. Geosciences Journal, 22, 871-880. 

  10. Hwang, B., Han, J.T., Kim, J., Kwak, T.Y., 2020a, Liquefaction characteristic of Pohang sand based on cyclic triaxial test, Journal of the Korean Geotechnical Society, 36(9), 21-32 (in Korean with English abstract). 

  11. Hwang, B., Kwak, T.Y., Kim, J., Han, J.T., 2020b, Liquefaction characteristics of sands based on cyclic direct simple shear test, Journal of Korean Society of Hazard Mitigation, 20(4), 239-249 (in Korean with English abstract). 

  12. Hwang, K.R., Lee, H.S., 2018, Seismic damage to RC low-rise building structures having irregularities at the ground story during the 15 November 2017 Pohang, Korea, Earthquake Journal of Earthquake Engineering Society of Korea, 22(3), 103-111 (in Korean with English abstract). 

  13. Iwasaki, T., Tatsuoka, F., Tokida, K., Yasuda, S., 1978, A practical method for assessing liquefaction potential based on case studies at various sites in Japan, Proceedings of the 5th Japan Symposium on Earthquake Engineering, 641-648. 

  14. Jin, K., Kim, Y.S., 2020, Importance of the archaeoseismological study for earthquake geology in South Korea, Journal of Geological Society of Korea, 56(2), 251-264 (in Korean with English abstract). 

  15. Kim, J., Kwak, T.Y., Han, J.T., Hwang, B.Y., Kim, K.S., 2020a, Evaluation of dynamic ground properties of Pohang area based on in-situ and laboratory test, Journal of the Korean Geotechnical Society, 36(9), 5-20 (in Korean with English abstract). 

  16. Kim, K.H., Seo, W., Han, J., Kwon, J., Kang, S.Y., Ree, J.H., Kim, S., Liu, K., 2020b, The 2017 ML 5.4 Pohang earthquake sequence, Korea, recorded by a dense seismic network, Tectonophysics, 774(5), 228-306. 

  17. Kim, T., Chu, Y., Kim, S.R., Bhandary, D., 2018, Seismic behavior of domestic piloti-type buildings damaged by 2017 Pohang earthquake, Journal of Earthquake Engineering Society of Korea, 22(3), 161-168 (in Korean with English abstract). 

  18. Lee, H., Kim, J.C., Ko, K., Ghim, Y.S., Kim, J., Lee, S.R., 2018, Characteristics of sand volcanoes caused by 2017 Pohang Earthquake-induced liquefaction and their paleoseismological approach, Journal of the Geological Society of Korea, 54(3), 221-235 (in Korean with English abstract). 

  19. Lee, H.Y., Kim, S.W., 1964, Explanatory text of the geological map of Gimhae sheets, 1: 50,000. Korea Research Institute of Geoscience and Mineral Resources (in Korean with English abstract). 

  20. Lee, M.S., Kang, P.J., 1964, Explanatory text of the geological map of Yangsan sheets, 1: 50,000. Korea Research Institute of Geoscience and Mineral Resources (in Korean with English abstract). 

  21. Liao, S.S.C., Whitman, R.V., 1986, Overburden correction factors for SPT in sand, Journal of the Geotechnical Engineering Division, ASCE, 112(GT3), 373-377. 

  22. MOCT (Ministry of Construction and Transportation), 1997, Seismic design standard(II) (in Korean). 

  23. MOCT (Ministry of Construction and Transportation), 2018, Seismic design standard (in Korean). 

  24. MPSS (Ministry of Public Safety and Security), 2017, Minimum requirements for seismic design, Sejong, Korea (in Korean). 

  25. Park, Y.D., Yoon, H.D., 1968, Geologic map of Korea (Bangeojin sheet 1: 50,000). Geological Survey of Korea (in Korean with English abstract). 

  26. Seed, H.B., Idriss, I.M., 1971, Simplified procedure for evaluating soil liquefaction potential, Journal of the Soil Mechanic and Foundation Division, ASCE, 97(9), 1249-1273. 

  27. Seed, H.B., Tokimatsu, K., Harder, L.F., Chung, R.M., 1985, Influence of SPT procedures in soil liquefaction resistance evaluations, Journal of Geotechnical Engineering, 111(12). 

  28. Son, C.M., Lee, S.M., Kim, Y.K., Kim, S.W., Kim, H.S., 1978, Explanatory text of the geological map of Dongrae and Weolnae sheets, 1: 50,000. Korea Research Institute of Geoscience and Mineral Resources (in Korean with English abstract). 

  29. Sonmez, H., 2003, Modification of the liquefaction potential index and liquefaction susceptibility mapping for a liquefactionprone area (Inegol,Turkey), Environmental Geology, 44(7), 862-871. 

  30. Sun, C.G., 2010a, Seismic site classes according to site period by predicting spatial geotechnical layers in Hongseong, Journal of the Korean Association of Geographic Information Studies, 13, 32-49 (in Korean with English abstract). 

  31. Sun, C.G., 2010b, Suggestion of additional criteria for site categorization in Korea by quantifying regional specific characteristics on seismic response, Geophysics and Geophysical Exploration, 13, 203-218 (in Korean with English abstract). 

  32. Sun, C.G., Chung, C.K., Kim, D.S., 2007, Determination of mean shear wave velocity to the depth of 30 m based on shallow shear wave velocity profile, Earthquake Journal of Earthquake Engineering Society of Korea, 11, 45-57 (in Korean with English abstract). 

  33. Sun, C.G., Kim, D.S., Chung, C.K., 2005, Geologic site conditions and site coefficients for estimating earthquake ground motions in the inland areas of Korea, Engineering Geology, 81, 446-469. 

  34. Youd, T.L., Idriss, I.M., 2001, Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of Soils, Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297-313. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로