$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 고려인삼과 당뇨병: 세포와 동물 및 인체실험을 통한 고려인삼의 당뇨병에 대한 효능
Korean Ginseng and Diabetes: An Insight into Antidiabetic Effects of Korean Ginseng (Panax ginseng C. A. Meyer) in Cultured Cells, Animal Models and Human Studies 원문보기

생약학회지, v.51 no.1, 2020년, pp.1 - 29  

서성호 ((주)리바이오 연구소) ,  박건국 ((주)리바이오 연구소) ,  박종대 ((주)리바이오 연구소)

Abstract AI-Helper 아이콘AI-Helper

Diabetes mellitus, commonly known as diabetes, is a group of metabolic disorders characterized by high blood sugar levels over a prolonged period. Diabetes has been found to show many acute complications such as cardiovascular disease, stroke, chronic kidney disease, foot ulcer and damage to eyes. K...

Keyword

표/그림 (10)

질의응답

핵심어 질문 논문에서 추출한 답변
AMP-activated protein kinase(AMPK)란 무엇인가? AMPK는 세포내 에너지 항상성 유지에 센서 역할을 하는 주요 효소로서 AMPK 활성화는 지방산 산화를 촉진하고 포도당과 콜레스테롤, 중성지방 생성을 감소시킨다. 따라서 2형 당뇨병이나 대사질환의 중요한 약리학적 표적(target)이 되고 있다.
한방에서 명시하는 당뇨증상은? 3) 중국 명나라(1368-1644), 이시진(李時珍,1518~1593)이 저술한 본초강목(本草綱目)에 인삼이 당뇨증상을 치료한다고 기술되어 있다. 그 증상은 다음(多飮), 다식(多食), 에너지와 체중 감소를 유발하는 소갈증(消渴症)으로 기술되어있다. 한방의학에서 소갈(消渴)은 다뇨(多尿)와 구갈(口渴)을 주증상(主症狀)으로 하는 오늘날 당뇨병에 상당하는 개념으로 이해되고 있다.
ginsenosides외의 성분들의 항당뇨효과 연구가 필요한 이유는? 아울러 이러한 ginsenosides 효과의 주요 분자기전은 포도당 수송체 단백질 GLUT1, GLUT4, SGLT1 유전자 발현의 증가, 인슐린 저항성과 관련 11β-HSD1 억제, HOMA-IR 감소, 지방산화 촉진 유전자 CPT-1 증가 및 AMPK 활성화, PPARγ 활성화, 공복혈당 감소 및 당 내성 개선과 관련된 PI3K/Akt 신호 경로 활성화, 지방축적 억제와 관련된 Sirt1 및 AMPK 신호전달 경로 활성화, 당 신생억제 관련 PEPCK, G6pase 억제, glucokinase 증가, 췌장세포 보호 및 세포사멸 억제와 관련된 caspase-3 억제, Bcl-xL 증가, 항염증과 관련된 TNF-α, IL-6, COX-2, iNOS 및 NF-κB 경로 억제, p38MAPK, ERK1/2와 JNK signaling pathway 억제, 항산화 활성과 관련 SOD, CAT 활성 및 MDA의 저하, 지질대사 개선과 관련된 TG, TC, LDL-C 감소, CPT-1 활성 증가, AMPK 활성화, A-FABP 억제, STAT3, PPARγ, CEBPα 발현의 하향조절 등으로 제시되었다. 한편 많은 실험적 연구에서 ginsenosides를 중심으로 항당뇨 효과 검색이 이루어져 그 유효성이 제시되고 있으나, 인삼 중 비사포닌계 성분 성분(glycans, glycopeptide 등)에서도 항당뇨효과를 보이고 더욱 최근 인체실험 결과 진세노사이드 함량이 오히려 적은 인삼시료에서 항당뇨 효과를 보여 비사포닌계 성분의 유효성을 암시하는 연구결과도 제시되었다. 따라서 인삼 중 진세노사이드 절대함량 뿐만 아니라, 그 성분조성과 비사포닌계 성분의 항당뇨효과 연구도 필요하다고 본다.
질의응답 정보가 도움이 되었나요?

참고문헌 (187)

  1. Bai, L., Gao, J., Wei, F., Zhao, J., Wang, D. and Wei, J. (2018) Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front. Pharmacol. 9: A423. 

  2. Pandey, A., Tripathi, P., Pandey, R., Srivatava, R. and Goswami, S. (2011) Alternative therapies useful in the management of diabetes: A systematic review. J. Pharm. Bioallied. Sci. 3: 504-512. 

  3. Kimura, M. and Suzuki, J. (1981) The pattern of action blended Chinese traditional medicines to glucose tolerance curves in genetically diabetic KK-CAy mice. J. pham. Dyn. 4: 907-915. 

  4. Yuan, H. D., Kim, J. T., Kim, S. H. and Chung, S. H. (2012) Ginseng and Diabetes: The Evidences from In vitro, animal and human studies. J. Ginseng Res. 36: 27-39. 

  5. Nam, K. Y. (1996). The new Korean ginseng (constituent and its pharmacological efficacy). Korea Ginseng & Tabacco Research Institute, Daejeon, Korea. 1-134. 

  6. Dey, L., Attele, A. S. and Yuan, C. S. (2002) Alternative therapies for type 2 diabetes. Altern. Med. Rev. 7: 45-58. 

  7. Kim, D. H. (2002) Herbal medicines are activated by intestinal microflora. Nat. Prod. Sci. 8: 35-43. 

  8. Kim, D. H. (2012) The possible role of intestinal microflora in pharmacological activities of ginseng. International Journal of Biomedical and Pharmaceutical Sciences 6: 90-96. 

  9. Abdul-Ghani, M. A., Tripathy, D. and DeFronzo, R. A. (2006) Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 29: 1130-1139. 

  10. Yoon, S. H., Han, E. J., Sung, J. H., Chung, S. H., Kim, K. and Kim, H. Y. (2008) Korean red ginseng stimulates insulin release from isolated rat pancreatic islets. J. Ethnopharmacol. 120: 190-195. 

  11. Park, S. M., Hong, S. M., Sung, S. R., Lee, J. E. and Kwon, D. Y. (2008) Extracts of Rehmanniae Radix, Ginseng Radix and Scutellariae Radix improve glucose-stimulated insulin secretion and beta-cell proliferation through IRS2 induction. Genes Nutr. 2: 347-351. 

  12. Kim, K. and Kim, H. Y. (2008) Korean red ginseng stimulates insulin release from isolated rat pancreatic islets. J. Ethnopharmacol. 120: 190-195. 

  13. Kim, H. Y. and Kim, K. (2007) Protective effect of ginseng on cytokine induced apoptosis in pancreatic beta-cells. J. Agric. Food Chem. 55: 2816-2823. 

  14. Kim, K., Park, M. and Young, K. H. (2009) Ginsenoside Rg3 suppresses palmitate-Induced apoptosis in MIN6N8 pancreatic beta-Cells. J. Clin. Biochem. Nutr. 46: 30-35. 

  15. Park, M. W., Ha, J. and Chung, S. H. (2008) 20(S)-ginsenoside Rg3 enhances glucose-stimulated insulin secretion and activates AMPK. Biol. Pharm. Bull. 31: 748-751. 

  16. Han, G. C., Ko, S. K., Sung, J. H. and Chung, S. H. (2007) Compound K enhances insulin secretion with beneficial metabolic effects in db/db mice. J. Agric. Food Chem. 55: 10641-10648. 

  17. Gu, J., Li, W., Xiao, D., Wei, S., Cui, W., Chen, W., Hu, Y., Bi, X., Kim, Y., Li, J., Du, H., Zhang, M. and Chen, L. (2013) Compound K, a final intestinal metabolite of ginsenosides, enhances insulin secretion in MIN6 pancreatic beta-cells by upregulation of GLUT2. Fitoterapi 87: 84-88. 

  18. Park, S., Ahn, I. S., Kwon, D. Y., Ko, B. S. and Jun, W. K. (2008) Ginsenosides Rb1 and Rg1 suppress triglyceride accumulation in 3T3-L1 adipocytes and enhance beta-cell insulin secretion and viability in Min6 cells via PKA-dependent pathways. Biosci. Biotechnol. Biochem. 72: 2815-2823. 

  19. Chen, F., Chen, Y., Kang, X., Zhou, Z., Zhang, Z. and Liu, D. (2012) Anti-apoptotic function and mechanism of ginseng saponins in Rattus pancreatic ${\beta}$ -cells. Biol. Pharm. Bull. 35: 1568-1573. 

  20. Yuan, H. D., Kim, S. J. and Chung, S. H. (2011) Beneficial effects of IH-901 on glucose and lipid metabolisms via activating adenosine monophosphate-activated protein kinase and phosphatidylinositol-3 kinase pathways. Metabolism 60: 43-51. 

  21. Lee, K. T., Jung, T. W., Lee, H. J., Kim, S. G., Shin, Y. S. and Whang, W. K. (2011) The antidiabetic effect of ginsenoside Rb2 via activation of AMPK. Arch. Pharm. Res. 34: 1201-1208. 

  22. Quan, H. Y., Yuan, H. D., Jung, M. S., Ko, S. K., Park, Y. G. and Chung, S. H. (2012) Ginsenoside Re lowers blood glucose and lipid levels via activation of AMP-activated protein kinase in HepG2 cells and high-fat diet fed mice. Int. J. Mol. Med. 29: 73-80. 

  23. Musi, N. (2006) AMP-activated protein kinase and type 2 diabetes. Curr. Med. Chem. 13: 583-589. 

  24. Meng, F., Su, X., Li, W. and Zheng, Y. (2017) Ginsenoside Rb3 strengthens the hypoglycemic effect through AMPK for inhibition of hepatic gluconeogenesis. Exp. Ther. Med. 13: 2551-2557. 

  25. Wei, S., Li, W., Yu, Y., Yao, F., A, L., Lan, X., Guan, F., Zhang, M. and Chen, L. (2015) Ginsenoside Compound K suppresses the hepatic gluconeogenesis via activating adenosine-5'monophosphate kinase: A study in vitro and in vivo. Life Sci. 139: 8-15. 

  26. Kim, S. J., Yuan, H. D. and Chung, S. H. (2010) Ginsenoside Rg1 suppresses hepatic glucose production via AMP-activated protein kinase in HepG2 cells. Biol. Pharm. Bull. 33: 325-328. 

  27. Chen, L. Q., Cheung, L. S., Feng, L., Tanner, W. and Frommer, W. B. (2015) Transport of sugars. Annu. Rev. Biochem. 84: 865-894. 

  28. Shang, W., Yang, Y., Zhou, L., Jiang, B., Jin, H. and Chen, M. (2008) Ginsenoside Rb1 stimulates glucose uptake through insulinlike signaling pathway in 3T3-L1 adipocytes. J. Endocrinol. 198: 561-569. 

  29. Shang, W. B., Guo, C., Zhao, J., Yu, X. Z. and Zhang, H. (2014) Ginsenoside Rb1 upregulates expressions of GLUTs to promote glucose consumption in adiopcytes. Acta Pharmacol. Sin. 39: 4448-4452. 

  30. Lee, O. H., Lee, H. H., Kim, J. H. and Lee, B. Y. (2011) Effect of ginsenosides Rg3 and Re on glucose transport in mature 3T3-L1 adipocytes. Phytother. Res. 25: 768-773. 

  31. Chang, T. C., Huang, S. F., Yang, T.C., Chan, F. N., Lin, H. C. and Chang, W. L. (2007) Effect of ginsenosides on glucose uptake in human Caco-2 cells is mediated through altered Na+/glucose cotransporter 1 expression. J. Agric. Food Chem. 55: 1993-1998. 

  32. Wood, I. S. and Trayhurn, P. (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. British Journal of Nutrition 89: 3-9. 

  33. Trayhurn, P., Bing, C. and Wood, I. S. (2006) Adipose tissue and adipokines-energy regulation from the human perspective. The Journal of Nutrition. 136: 1935S-1939S. 

  34. Dyer J, Wood IS, Palejwala A, Ellis A, and Shirazi-Beechey SP (2002) Expression of monosaccharide transporters in intestine of diabetic humans. Am. J. Physiol. Gastrointest. Liver Physiol. 282: G241-G248 

  35. Wang, C. W., Su, S. C., Huang, S. F., Huang, Y. C., Chan, F. N., Kuo, Y. H., Hung, M. W., Lin, H. C., Chang, W. L. and Chang, T. C. (2015) An essential role of cAMP response element binding protein in ginsenoside Rg1-mediated inhibition of $Na^+$ /glucose cotransporter 1 gene expression. Mol. Pharmacol. 88: 1072-1083. 

  36. Zhang, Z., Li, X., Lv, W., Yang, Y., Gao, H., Yang, J., Shen, Y. and Ning, G. (2008) Ginsenoside Re reduces insulin resistance through inhibition of c-Jun NH2-terminal kinase and nuclear factor-kappa B. Mol. Endocrinol. 22: 186-195. 

  37. Mu, Q., Fang, X., Li, X., Zhao, D., Mo, F., Jiang, G., Yu, N., Zhang, Y., Guo, Y., Fu, M., Liu, J. L., Zhang, D. and Gao, S. (2015) Ginsenoside Rb1 promotes browning through regulation of $PPAR{\gamma}$ in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 466: 530-535. 

  38. Hwang, J. T., Kim, S. H., Lee, M. S., Kim, S. H., Yang, H. J., Kim, M. J., Kim, H. S., Ha, J., Kim, M. S. and Kwon, D. Y. (2007) Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem. Biophys. Res. Commun. 364: 1002-1008. 

  39. Huang, Y. C., Lin, C. Y., Huang, S. F., Lin, H. C., Chang, W. L. and Chang, T. C. (2010) Effect and mechanism of ginsenosides CK and Rg1 on stimulation of glucose uptake in 3T3-L1 adipocytes. J. Agric. Food Chem. 58: 6039-6047. 

  40. Kim, K., Park, M., Lee, Y. M., Rhyu, M. R. and Kim, H. Y. (2014) Ginsenoside metabolite compound K stimulates glucagon-like peptide-1 secretion in NCI-H716 cells via bile acid receptor activation. Arch. Pharm. Res. 37: 1193-1200. 

  41. Ponnuraj, S. P., Siraj, F., Kang, S., Noh, H. Y., Min, J. W., Kim, Y. J. and Yang, D. C. (2014) Amelioration of insulin resistance by Rk1 + Rg5 complex under endoplasmic reticulum stress conditions. Pharmacognosy Res. 6: 292-296. 

  42. Simu, S. Y., Ahn, S., Castro-Aceituno, V. and Yang, D. C. (2017) Ginsenoside Rg5 + Rk1 exerts an anti-obesity effect on 3T3-L1 cell line by the downregulation of $PPAR{\gamma}$ and $CEBP{\alpha}$ . Iran J. Biotechnol. 15: 252-259. 

  43. Lee, M. S., Hwang, J. T., Kim, S. H., Yoon, S., Kim, M. S., Yang, H. J. and Kwon, D. Y. (2010) Ginsenoside Rc, an active component of Panax ginseng, stimulates glucose uptake in C2C12 myotubes through an AMPK-dependent mechanism. J. Ethnopharmacol. 127: 771-776. 

  44. Seo, Y. S., Shon, M. Y., Kong, R., Kang, O. H,. Zhou, T., Kim, D. Y. and Kwon, D. Y. (2016) Black ginseng extract exerts anti-hyperglycemic effect via modulation of glucose metabolism in liver and muscle. J. Ethnopharmacol. 190: 231-240. 

  45. Park, M. W., Ha, J. and Chung, S. H. (2008) 20 (S)-ginsenoside Rg3 enhances glucose-stimulated insulin secretion and activates AMPK. Biological and Pharmaceutical Bulletin 31: 748-751. 

  46. Kim, M., Ahn, B. Y., Lee, J. S., Chung, S. S., Lim, S., Park, S. G., Jung, H. S., Lee, H. K. and Park, K. S. (2009) The ginsenoside Rg3 has a stimulatory effect on insulin signaling in L6 myotubes. Biochem. Biophys. Res. Commun. 389: 70-73. 

  47. Qiu, S., Yang, W. Z., Yao, C. L., Shi, X. J., Li, J. Y., Lou, Y., Duan, Y. N., Wu, W. Y. and Guo, D. A. (2017) Malonylginsenosides with Potential Antidiabetic Activities from the Flower Buds of Panax ginseng. J. Nat. Prod. 80: 899-908. 

  48. Park, M. J., Bae, C. S., Lim, S. K., Kim, D. I., Lim, J. C., Kim, J. C., Han, H. J., Moon, J. H., Kim, K. Y., Yoon, K. C. and Park, S. H. (2010) Effect of protopanaxadiol derivatives in high glucose-induced fibronectin expression in primary cultured rat mesangial cells: role of mitogen-activated protein kinases and Akt. Arch. Pharm. Res. 33: 151-157. 

  49. Lo, S. H., Hsu, C. T., Niu, H. S., Niu, C. S., Cheng, J. T. and Chen, Z. C. (2017) Ginsenoside Rh2 Improves Cardiac Fibrosis via $PPAR{\delta}$ -STAT3 Signaling in Type 1-Like Diabetic Rats. Int. J. Mol. Sci. 18: 1364. 

  50. Hong, Y. J., Kim, N., Lee, K., Sonn, C. H., Lee, J. E., Kim, S. T., Baeg, I. H. and Lee, K. M. (2012) Korean red ginseng (Panax ginseng) ameliorates type 1 diabetes and restores immune cell compartments. J. Ethnopharmacol. 144: 225-233. 

  51. Kang, K. S., Kim, H. Y., Yamabe, N., Nagai, R. and Yokozawa, T. (2006) Protective effect of sun ginseng against diabetic renal damage. Biol. Pharm. Bull. 29: 1678-1684. 

  52. Kim, S. H., Kang, J. S., Lee, S. J. and Chung, Y. J. (2008) Antidiabetic effect of Korean red ginseng by puffing process in streptozotocin-induced diabetic rats. J. Korean Soc. Food Sci. Nutr. 37: 701-707. 

  53. Nishijo, H., Uwano, T., Zhong, Y. M. and Ono, T. (2004) Proof of the mysterious efficacy of ginseng: basic and clinical trials: effects of red ginseng on learning and memory deficits in an animal model of amnesia. J. Pharmacol. Sci. 95: 145-152. 

  54. Rokot, N. T., Kairupan, T. S., Cheng, K. C., Runtuwene, J., Kapantow, N. H., Amitani, M., Morinaga, A., Amitani, H., Asakawa, A. and Inui, A. (2016) A role of ginseng and its constituents in the treatment of central nervous system disorders. Evid. Based Complement. Alternat. Med. 2016: 2614742. 

  55. Kamal, A., Biessels, G. J., Duis, S. E. and Gispen, W. H. (2000) Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing. Diabetologia 43: 500-506. 

  56. Jackson-Guilford, J., Leander, J. D. and Nisenbaum, L. K. (2000) The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus. Neurosci. Lett. 293: 91-94. 

  57. Lim, B. V., Shin, M. C., Jang, M. H., Lee, T. H., Kim, Y. P., Kim, H. B., Lee, K. S., Kim, H., Kim, E. H. and Kim, C. J. (2002) Ginseng radix increases cell proliferation in dentate gyrus of rats with streptozotocin-induced diabetes. Biol. Pharm. Bull. 25: 1550-1554. 

  58. Jang, M. H., Chang, H. K., Shin, M. C., Lee, T. H., Kim, Y. P., Kim, E. H. and Kim, C. J. (2003) Effect of ginseng radix on c-Fos expression in the hippocampus of streptozotocininduced diabetic rats. J. Pharmacol. Sci. 91: 149-152. 

  59. Gispen, W. H. and Biessels, G. J. (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci. 23: 542-549. 

  60. Liu, D., Zhang, H., Gu, W., Liu, Y. and Zhang, M. (2014) Ginsenoside Rb1 protects hippocampal neurons from high glucose-induced neurotoxicity by inhibiting $GSK3{\beta}$ -mediated CHOP induction. Mol. Med. Rep. 9: 1434-1438. 

  61. Chu, S., Gu, J., Feng, L., Liu, J., Zhang, M., Jia, X., Liu, M. and Yao, D. (2014) Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int. Immunopharmacol. 19: 317-326. 

  62. Kim, C. S., Jo, K., Kim, J. S., Pyo, M. K. and Kim, J. (2017) GS-E3D, a new pectin lyase-modified red ginseng extract, inhibited diabetes-related renal dysfunction in streptozotocininduced diabetic rats. BMC Complement. Altern. Med. 17: 430. 

  63. Guo, S. (2014) Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J. Endocrinol. 220: T1-T23. 

  64. Li, X., Luo, J., Anandh, Babu. P. V., Zhang, W., Gilbert, E., Cline, M., McMillan, R., Hulver, M., Alkhalidy, H., Zhen, W., Zhang, H. and Liu, D. (2014) Dietary supplementation of chinese ginseng prevents obesity and metabolic syndrome in high-fat diet-fed mice. J. Med. Food. 17: 1287-1297. 

  65. Yun, S. N., Ko, S. K., Lee, K. H. and Chung, S. H. (2007) Vinegar-processed ginseng radix improves metabolic syndrome induced by a high fat diet in ICR mice. Arch. Pharm. Res. 30: 587-595. 

  66. Kanda, H., Tateya, S., Tamori, Y., Kotani, K., Hiasa, K., Kitazawa, R., Kitazawa, S., Miyachi, H., Maeda, S. and Egashira, K. (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116: 1494-1505. 

  67. Oh, M. J., Kim, H. J., Park, E. Y., Ha, N. H., Song, M. G., Choi, S. H., Chun, B. G. and Kim, D. H. (2017) The effect of Korean Red Ginseng extract on rosiglitazone-induced improvement of glucose regulation in diet-induced obese mice. J. Ginseng Res. 41: 52-59. 

  68. Kho, M. C., Lee, Y. J., Park, J. H., Kim, H. Y., Yoon, J. J., Ahn, Y. M., Tan, R., Park, M. C., Cha, J. D., Choi, K. M., Kang, D. G. and Lee, H. S. (2016) Fermented red ginseng potentiates improvement of metabolic dysfunction in metabolic syndrome rat models. Nutrients 8: 369. 

  69. Liu, T. P., Liu, I. M. and Cheng, J. T. (2005) Improvement of insulin resistance by Panax ginseng in fructose-rich chow-fed rats. Horm. Metab. Res. 37: 146-151. 

  70. Lee, S. H., Lee, H. J., Lee, Y., Lee, B. W., Cha, B. S., Kang, E. S., Ahn, C. W., Park, J. S., Kim, H. J., Lee, E. Y. and Lee, H. C. (2012) Korean red ginseng (Panax ginseng) improves insulin sensitivity in high fat fed Sprague-Dawley rats. Phytother. Res. 26: 142-147. 

  71. Kim, S. D., Kim, Y. J., Huh, J. S., Kim, S. W. and Sohn, D. W. (2013) Improvement of erectile function by Korean red ginseng (Panax ginseng) in a male rat model of metabolic syndrome. Asian J. Androl. 15: 395-399. 

  72. Yuan, H. D., Kim, J. T. and Chung, S. H. (2012) Pectinaseprocessed Ginseng radix (GINST) ameliorates hyperglycemia and hyperlipidemia in high fat diet-fed ICR mice. Biomol. Ther. 20: 220-225. 

  73. Jung, H. L. and Kang, H. Y. (2013) Effects of Korean red ginseng supplementation on muscle glucose uptake in high-fat fed rats. Chin. J. Nat. Med. 11: 494-499. 

  74. Kang, K. S., Ham, J., Kim, Y. J., Park, J. H., Cho, E. J. and Yamabe, M. (2013) Heat-processed Panax ginseng and diabetic renal damage: active components and action mechanism. J. Ginseng Res. 37: 379-388. 

  75. Park, J. K., Shim, J. Y., Cho, A. R., Cho, M. R. and Lee, Y. J. (2018) Korean red ginseng protects against mitochondrial damage and intracellular inflammation in an animal model of type 2 diabetes mellitus. J. Med. Food 21: 544-550. 

  76. Chung, S. H., Choi, C. G. and Park, S. H. (2001) Comparisons between white ginseng radix and rootlet for antidiabetic activity and mechanism in KKAy mice. Arch. Pharm. Res. 24: 214-218. 

  77. Reddy, J. K. and Hashimoto, T. (2001) Peroxisomal ${\beta}$ -oxidation and peroxisome proliferatoractivated receptor ${\alpha}$ : an adaptive metabolic system. Annu. Rev. Nutr. 21: 193-230. 

  78. Lee, H. J., Park, S. K., Han, S. J., Kim, S. H., Hur, K. Y., Kang, E. S., Ahn, C. W., Cha, B. S., Kim, K. S. and Lee, H. C. (2007) Korean red ginseng improves insulin sensitivity. Metabolism 58: 1170-1177. 

  79. Park, M. Y., Lee, K. S. and Sung, M. K. (2005) Effects of dietary mulberry, Korean red ginseng, and banaba on glucose homeostasis in relation to PPAR-alpha, PPAR-gamma and LPL mRNA expressions. Life Sci. 77: 3344-3354. 

  80. Lee, H., Kim, M., Shin, S. S. and Yoon, M. (2014) Ginseng treatment reverses obesity and related disorders by inhibiting angiogenesis in female db/db mice. Journal of Ethnopharmacology 155: 1342-1352. 

  81. Lee, H. J., Lee, Y. H., Park, S. K., Kang, E. S., Kim, H. J., Lee, Y. C., Choi, C. S., Park, S. E., Ahn, C. W., Cha, B. S., Lee, K. W., Kim, K. S., Lim, S. K. and Lee, H.C. (2009) Korean red ginseng (Panax ginseng) improves insulin sensitivity and attenuates the development of diabetes in Otsuka Long-Evans Tokushima fatty rats. Metabolism 58: 1170-1177. 

  82. Yuan, H. D., Shin, E. J. and Chung, S. H. (2008) Anti-diabetic effect and mechanism of Korean red ginseng in C57BL/KsJ db/db mice. J. Ginseng Res. 32: 187-193. 

  83. Jeon, W. J., Oh, J. S., Park, M. S. and Ji, G. E. (2013) Antihyperglycemic effect of fermented ginseng in type 2 diabetes mellitus mouse model. Phytother. Res. 27: 166-172. 

  84. Lim, S., Yoon, J. W., Choi, S. H., Cho, B. J., Kim, J. T., Chang, H. S., Park, H. S., Park, K. S., Lee, H. K., Kim, Y. B. and Jang, H. C. (2009) Effect of ginsam, a vinegar extract from Panax ginseng, on body weight and glucose homeostasis in an obese insulin-resistant rat model. Metabolism 58: 8-15. 

  85. Cheon, J. M., Kim, D. I. and Kim, K. S. (2015) Insulin sensitivity improvement of fermented Korean red ginseng (Panax ginseng) mediated by insulin resistance hallmarks in old-aged ob/ob mice. J. Ginseng Res. 39: 331-337. 

  86. Hong, B. N., Ji, M. G. and Kang, T. H. (2013) The efficacy of red ginseng in type 1 and type 2 diabetes in animals. Evid. Based Complement. Alternat. Med. 2013: 593181. 

  87. Onoda, T., Li, W. and Koike, K. (2014) Evaluation of 147 kampo prescriptions as novel protein tyrosine phosphatase 1B(PTP1B) inhibitory agent. BMC Complement. Altern. Med. 14: A64. 

  88. Kim, H. Y. and Kim, K. (2012) Regulation of signaling molecules associated with insulin action, insulin secretion and pancreatic ${\beta}$ -cell mass in the hypoglycemic effects of Korean red ginseng in Goto-Kakizaki rats. J. Ethnopharmacol. 142: 53-58. 

  89. Nam, K. Y., Kim, Y. S., Shon, M. Y. and Park, J. D. (2015) Recent advances in studies on chemical constituents and biological activities of Korean black ginseng (Panax ginseng C. A. Meyer). Kor. J. Pharmacogn. 46: 173-188. 

  90. Kim, J. H., Pan, J. H., Cho, H. T. and Kim, Y. J. (2016) Black ginseng extract counteracts streptozotocin-induced diabetes in mice. PLoS One 11: e0146843. 

  91. Kim, S. N. and Kang, S. J. (2009) Effects of black ginseng (9 times-steaming ginseng) on hypoglycemic action and changes in the composition of ginsenosides on the steaming process. Korean J. Food Sci. Technol. 41: 77-81. 

  92. Kang, S. J. and Kim, A. J. (2011) Anti-diabetic effect of black ginseng in C57BLKS/J-db/db mice. The Korean Journal of Food And Nutrition 24: 770-776. 

  93. Kim, A. J., Yoo, H. S. and Kang, S. J. (2012) Ameliorative effect of black ginseng on diabetic complications in C57BLKS/J-db/db mice. The Korean Journal of Food And Nutrition 25: 99-104. 

  94. Lee, M. R., Kim, B. C., Kim, R., Oh, H. I., Kim, H. K., Choi, K. J. and Sung, C. K. (2013) Anti-obesity effects of black ginseng extract in high fat diet-fed mice. J. Ginseng Res. 37: 308-314. 

  95. Yuan, H. D., Kin, S. J., Quan, H. Y., Huang, B. and Chung, S. H. (2010) Ginseng leaf extract prevents high fat dietinduced hyperglycemia and hyperlipidemia through AMPK activation. J. Ginseng Res. 34: 369-375. 

  96. Xie, J. T., Mehendale, S. R., Li, X., Quigg, R., Wang, X., Wang, C. Z., Wu, J. A., Aung H. H., A Rue, P., Bell, G. I. and Yuan, C. S. (2005) Antidiabetic effect of ginsenoside Re in ob/ob mice. Biochim. Biophys. Acta 1740: 319-325. 

  97. Xie, J. T., Wang, C. Z., Wang, A. B., Wu, J., Basila, D. and Yuan, C. S. (2005) Antihyperglycemic effects of total ginsenosides from leaves and stem of Panax ginseng. Acta Pharmacol. Sin. 26: 1104-1110. 

  98. Xie, J. T., Zhou, Y. P., Dey, L., Attele, A. S., Wu, J. A., Gu, M., Polonsky, K. S. and Yuan, C. S. (2002) Ginseng berry reduces blood glucose and body weight in db/db mice. Phytomedicine 9: 254-258. 

  99. Dey L, Xie JT, Wang A, Wu J, Maleckar SA, Yuan CS. (2003) Anti- hyperglycemic effects of ginseng: comparison between root and berry. Phytomedicine 10: 600-605. 

  100. Xie, J. T., Wu, J. A., Mehendale, S., Aung, H. H. and Yuan, C. S. (2004) Anti-hyperglycemic effect of the polysaccharides fraction from American ginseng berry extract in ob/ob mice. Phytomedicine 11: 182-187. 

  101. Park, E. Y., Kim, H. J., Kim, Y. K., Park, S. U., Choi, J. E., Cha, J. Y. and Jun, H. S. (2012) Increase in insulin secretion induced by Panax ginseng berry extracts contributes to the amelioration of hyperglycemia in streptozotocininduced diabetic mice. J. Ginseng Res. 36: 153-160. 

  102. Seo, E., Kim, S., Lee, S. J., Oh, B. C. and Jun, H. S. (2015) Ginseng berry extract supplementation improves agerelated decline of insulin signaling in mice. Nutrients 7: 3038-3053. 

  103. Attele, A. S., Zhou, Y. P., Xie, J. T., Wu, J. A., Zhang, L., Dey, L,. Pugh, W., Rue, P. A., Polonsky, K. S. and Yuan, C. S. (2002) Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51: 1851-1858. 

  104. Park, C. H., Park, S. K., Seung, T. W., Jin, D. E., Guo, T. and Heo, H. J. (2015) Effect of ginseng (Panax ginseng) berry EtOAc fraction on cognitive impairment in C57BL/6 mice under high-fat diet inducement. Evid. Based Complement. Alternat. Med. 2015: 316527. 

  105. Choi, M. R., Kwak, S. M., Bang, S. H., Jeong, J. E. and Kim, D. J. (2017) Chronic saponin treatment attenuates damage to the pancreas in chronic alcohol-treated diabetic rats. J. Ginseng Res. 41: 503-512. 

  106. Liu, Z., Wang, L. J., Li, X., Hu, J. N., Chen, Y., Ruan, C. C. and Sun, G. Z. (2009) Hypoglycemic effects of malonylginsenosides extracted from roots of Panax ginseng on streptozotocin-induced diabetic mice. Phytother. Res. 23: 1426-1430. 

  107. Liu, Z., Li, W., Li, X., Zhang, M., Chen, L., Zheng, Y. N., Sun, G. Z. and Ruan, C. C. (2013) Antidiabetic effects of malonyl ginsenosides from Panax ginseng on type 2 diabetic rats induced by high-fat diet and streptozotocin. J. Ethnopharmacol. 145: 233-240. 

  108. Xiong, Y., Shen, L., Liu, K. J., Tso, P., Xiong, Y., Wang, G., Woods, S. C. and Liu, M. (2010) Antiobesity and antihyperglycemic effects of ginsenoside Rb1 in rats. Diabetes 59: 2505-2512. 

  109. Shen, L., Haas, M., Wang, D. Q., May, A., Lo, C. C., Obici, S., Tso, P., Woods, S. C. and Liu, M. (2015) Ginsenoside Rb1 increases insulin sensitivity by activating AMP-activated protein kinase in male rats. Physiol. Rep. 3: e12543. 

  110. Huang, Q., Wang, T., Yang, L. and Wang, H. Y. (2017) Ginsenoside Rb2 alleviates hepatic lipid accumulation by restoring autophagy via induction of Sirt1 and activation of AMPK. Int. J. Mol. Sci. 18: 1063. 

  111. Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A. M. and Czaja, M. J. (2009) Autophagy regulates lipid metabolism. Nature 458: 1131-1135. 

  112. Gonzalez-Rodriguez, A., Mayoral, R., Agra, N., Valdecantos, M. P., Pardo, V., Miquilena-Colina, M. E., Vargas-Castrillon, J., Lo Iacono, O., Corazzari, M., Fimia G. M., Piacentini M, Muntane J., Bosca, L., Garcia-Monzon, C., Martin-Sanz, P. and Valverde A. M. (2014) Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 5: e1179. 

  113. Yu, H. T., Zhen, J., Pang, B., Gu, J. N. and Wu, S. S. (2015) Ginsenoside Rg1 ameliorates oxidative stress and myocardial apoptosis in streptozotocin-induced diabetic rats. Journal of Zhejiang University-Science B 16: 344-354. 

  114. Yu, H., Zhen, J., Yang, Y., Gu, J., Wu, S. and Liu, Q. (2016) Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in a streptozotocin-induced diabetes rat model. J. Cell. Mol. Med. 20: 623-631. 

  115. Li, J. B., Zhang, R., Han, X. and Piao, C. L. (2018) Ginsenoside Rg1 inhibits dietary-induced obesity and improves obesity-related glucose metabolic disorders. Braz. J. Med. Biol. Res. 51: e7139. 

  116. Tian, W., Chen, L., Zhang, L., Wang, B., Li, X. B., Fan, K. R., Ai, C. H., Xia, X., Li, S. D. and Li, Y. (2017) Effects of ginsenoside Rg1 on glucose metabolism and liver injury in streptozotocin-induced type 2 diabetic rats. Genet. Mol. Res. 16: gmr16019463. 

  117. Shen, J., Zhao, Z., Shang,W., Liu, C., Zhang, B., Zhao, L. and Cai, H. (2017) Ginsenoside Rg1 nanoparticle penetrating the blood-brain barrier to improve the cerebral function of diabetic rats complicated with cerebral infarction. Int. J. Nanomedcine 12: 6477-6486. 

  118. Liu, Q., Zhang, F. G., Zhang, W. S., Pan, A., Yang, Y. L., Liu, J. F., Li, P., Liu, B. L. and Qi, L. W. (2017) Ginsenoside Rg1 inhibits glucagon-induced hepatic gluconeogenesis through Akt-FoxO1 interaction. Theranostics 7: 4001-4012. 

  119. Kim, J. M., Park, C. H., Park, S. K., Seung, T. W., Kang, J. Y., Ha, J. S., Lee, D. S., Lee, U., Kim, D. O. and Heo, H. J. (2017) Ginsenoside ameliorates brain insulin resistance and cognitive dysfunction in high fat diet-induced C57BL/6 mice. J. Agric. Food Chem. 65: 2719-2729. 

  120. Shi, Y., Wan, X., Shao, N., Ye, R., Zhang, N. and Zhang, Y. (2016) Protective and anti-angiopathy effects of ginsenoside Re against diabetes mellitus via the activation of p38 MAPK, ERK1/2 and JNK signaling. Mol. Med. Rep. 14: 4849-4856. 

  121. Liu, T., Peng, Y. F., Jia, C., Yang, B. H., Tao, X., Li, J. and Fang, X. (2015) Ginsenoside Rg3 improves erectile function in streptozotocin-induced diabetic rats. The Journal of Sexual Medicine 12: 611-620. 

  122. Kim, K. S., Jung, Yang. H., Lee, I. S., Kim, K. H., Park, J., Jeong, H. S., Kim, Y., Ahn, K. S., Na, Y. C. and Jang, H. J. (2015) The aglycone of ginsenoside Rg3 enables glucagonlike peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice. Sci. Rep. 5: 18325. 

  123. Kang, K. S., Yamabe, N., Kim, H. Y., Park, J. H. and Yokozawa, T. (2008) Therapeutic potential of 20(S)-ginsenoside Rg(3) against streptozotocin-induced diabetic renal damage in rats. Eur. J. Pharmacol. 591: 266-272. 

  124. Kang, K. S., Yamabe, N., Kim, H. Y., Park, J. H. and Yokozawa, T. (2010) Effects of heat-processed ginseng and its active component ginsenoside 20(S)-Rg3 on the progression of renal damage and dysfunction in type 2 diabetic Otsuka Long-Evans Tokushima Fatty rats. Biol. Pharm. Bull. 33: 1077-1081. 

  125. Deng, J., Liu, Y., Duan, Z., Zhu, C., Hui, J., Mi, Y., Ma, P., Ma, X., Fan, D. and Yang, H. (2017) Protopanaxadiol and protopanaxatriol-type saponins ameliorate glucose and lipid metabolism in type 2 diabetes mellitus in high-fat diet/streptozocin-induced mice. Front. Pharmacol. 8: 506. 

  126. Lee WK, Kao ST, Liu IM and Cheng JT. (2006) Increase of insulin secretion by ginsenoside Rh2 to lower plasma glucose in Wistar rats. Clin. Exp. Pharmacol. Physiol. 33: 27-32. 

  127. Lee, W. K., Kao, S. T., Liu, I. M. and Cheng, J. T. (2007) Ginsenoside Rh2 is one of the active principles of Panax ginseng root to improve insulin sensitivity in fructose-rich chow-fed rats. Horm. Metab. Res. 39: 347-354. 

  128. Wang, Y., Wang, H., Liu, Y., Li, C., Qi, P. and Bao, J. (2012) Antihyperglycemic effect of ginsenoside Rh2 by inducing islet ${\beta}$ -cell regeneration in mice. Horm. Metab. Res. 44: 33-40. 

  129. Hwang, J. T., Lee, M. S., Kim, H. J., Sung, M. J., Kim, H. Y., Kim, M.S. and Kwon, D. Y. (2009) Antiobesity effect of ginsenoside Rg3 involves the AMPK and PPAR- $\gamma$ signal pathways. Phytother. Res. 23: 262-266. 

  130. Xiao, N., Lou, M. D., Lu, Y. T., Yang, L. L., Liu, Q., Liu, B., Qi, L. W. and Li, P. (2017) Ginsenoside Rg5 attenuates hepatic glucagon response via suppression of succinateassociated HIF-1alpha induction in HFD-fed mice. Diabetologia 60: 1084-1093. 

  131. Shadfar, S., Hwang, C. J., Lim, M. S., Choi, D. Y. and Hong, J. T. (2015) Involvement of inflammation in Alzheimer's disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch. Pharm. Res. 38: 2106-2119. 

  132. Jiang, S., Ren, D., Li, J., Yuan, G., Li, H., Xu, G., Han, X., Du, P. and An, L. (2014) Effects of compound K on hyperglycemia and insulin resistance in rats with type 2 diabetes mellitus. Fitoterapia 95: 58-64. 

  133. Eisenbarth G. S. (1986) Type I diabetes mellitus. A chronic autoimmune disease. N. Engl. J. Med. 314: 1360-1368. 

  134. Jamiolkowski, R. M., Guo, L. Y., Li, Y. R., Shaffer, S. M. and Naji, A. (2012) Islet transplantation in type I diabetes mellitus. Yale J. Biol. Med. 85: 37-43. 

  135. Ma, P. F., Jiang, J., Gao, C., Cheng, P. P., Li, J. L., Huang, X., Lin, Y. Y., Li, Q., Peng, Y. Z., Cai, M. C., Shao, W., Zhu, Q., Han, S., Qin, Q., Xia, J. J. and Qi, Z. Q. (2014) Immunosuppressive effect of compound K on islet transplantation in an STZ-induced diabetic mouse model. Diabetes 263: 3458-3469. 

  136. Shao, X., Li, N., Zhan, J., Sun, H., An, L. and Du, P. (2015) Protective effect of compound K on diabetic rats. Nat. Prod. Commun. 10: 243-245. 

  137. Cool, B., Zinker, B., Chiou, W., Kifle, L., Cao, N., Perham, M., Dickinson, R., Adler, A., Gagne, G., Iyengar, R., Zhao, G., Marsh, K., Kym, P., Jung, P., Camp, H. S. and Frevert, E. (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3: 403-416. 

  138. Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear L. J. and Moller, D. E. (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108: 1167-1174. 

  139. Madiraju, A. K., Erion, D. M., Rahimi, Y., Zhang, X. M., Braddock, D. T., Albright, R. A., Prigaro B. J, Wood, J. L., Bhanot, S., MacDonald, M. J., Jurczak, M. J., Camporez, J. P., Lee, H. Y., Cline, G. W., Samuel, V. T., Kibbey, R. G. and Shulman, G. I. (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510: 542-546. 

  140. Yoon, S. H., Han, E. J., Sung, J. H. and Chung, S. H. (2007) Anti-diabetic effects of compound K versus metformin versus compound K-metformin combination therapy in diabetic db/db mice. Biol. Pharm. Bull. 30: 2196-2200. 

  141. Sievenpiper, J. L., Sung, M. K., Di Buono, M., Seung-Lee, K., Nam, K. Y., Arnason, J. T., Leiter, L. A. and Vuksan, V. (2006) Korean red ginseng rootlets decrease acute postprandial glycemia: results from sequential preparation- and dose-finding studies. J. Am. Coll. Nutr. 25: 100-107. 

  142. Vuksan, V., Sung, M. K., Sievenpiper, J. L., Mark, Stavr. P., Jenkins, A. L., Buono, M. D., Lee, K. S., Leiter, L. A., Nam, K. Y., Arnason, J. T., Choi, M. and Naeem, A. (2008) Korean red ginseng(Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2, diabetes: Results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nut. Metab. Cardiovasc. Dis. 18: 46-56. 

  143. Ma, S. W., Benzie, I. F., Chu, T. T., Fok, B. S., Tomlinson, B. and Critchley, L. A. (2008) Effect of Panax ginseng supplementation on biomarkers of glucose tolerance, antioxidant status and oxidative stress in type 2 diabetic subjects: results of a placebo-controlled human intervention trial. Diabetes Obes. Metab. 10: 1125-1127. 

  144. Nathan, D. M., Davidson, M. B., DeFronzo, R. A., Heine, R. J., Henry, R. R., Pratley, R. and Zinman, B. (2007) Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care. 30: 753-759. 

  145. Tuomilehto, J., Lindstrom, J., Eriksson, J. G., Valle, T. T., Hamalainen, H., Ilanne-Parikka, P., Keinanen-Kiukaanniemi, S., Laakso, M., Louheranta, A., Rastas, M., Salminen, V., Uusitupa, M. and Finnish Diabetes Prevention Study Group. (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344: 1343-1350. 

  146. Bang, H., Kwak, J. H., Ahn, H. Y., Shin, D. Y. and Lee, J. H. (2014) Korean red ginseng improves glucose control in subjects with impaired fasting glucose, impaired glucose tolerance, or newly diagnosed type 2 diabetes mellitus. J. Med. Food 17: 128-134. 

  147. Li, A. M. and Zhao, J. (2009) Effect of renshen jianxin capsule for alleviating insulin resistance in patients with coronary heart disease and glucose tolerance impairment. Zhongguo Zhong Xi Yi Jie He Za Zhi 29: 830-833. 

  148. Yoon, J. W., Kang, S. M., Vassy, J. L., Shin, H., Lee, Y. H., Ahn, H. Y., Choi, S. H., Park, K. S., Jang, H. C. and Lim, S. (2012) Efficacy and safety of ginsam, a vinegar extract from Panax ginseng, in type 2 diabetic patients: Results of a double-blind, placebo-controlled study. J. Diabetes Investig. 3: 309-317. 

  149. Oh, M. R., Park, S. H., Kim, S. Y., Back, H. I., Kim, M. G., Jeon, J. Y., Ha, K. C., Na, W. T., Cha, Y. S., Park, B. H., Park, T. S. and Chae, S. W. (2014) Postprandial glucoselowering effects of fermented red ginseng in subjects with impaired fasting glucose or type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. BMC Complement. Altern. Med. 14: 237. 

  150. Park, S. H., Oh, M. R., Choi, E. K., Kim, M. G., Ha, K. C., Lee, S. K., Kim, Y. G., Park, B. H., Kim, D. S. and Chae, S. W. (2014) An 8-wk, randomized, double-blind, placebocontrolled clinical trial for the antidiabetic effects of hydrolyzed ginseng extract. J. Ginseng Res. 38: 239-243. 

  151. Choi, H. S., Kim, S., Kim, M. J., Kim, M. S., Kim, J., Park, C. W., Seo, D., Shin, S. S. and Oh, S. W. (2018) Efficacy and safety of Panax ginseng berry extract on glycemic control: A 12-wk randomized, double-blind, and placebo-controlled clinical trial. J. Ginseng Res. 42: 90-97. 

  152. Lee, K. J., Lee, S. Y. and Ji, G. E. (2013) Diabetes-ameliorating effects of fermented red ginseng and causal effects on hormonal interactions: testing the hypothesis by multiple group path analysis. J. Med. Food 16: 383-395. 

  153. Reeds, D. N., Patterson, B. W., Okunade, A., Holloszy, J. O., Polonsky, K. S. and Klein, S. (2011) Ginseng and ginsenoside Re do not improve ${\beta}$ -cell function or insulin sensitivity in overweight and obese subjects with impaired glucose tolerance or diabetes. Diabetes Care 34: 1071-1076. 

  154. Liu, L., Huang, J., Hu, X., Li, K. and Sun, C. (2011) Simultaneous determination of ginsenoside (G-Re, G-Rg1, GRg2, G-F1, G-Rh1) and protopanaxatriol in human plasma and urine by LC-MS/MS and its application in a pharmacokinetics study of G-Re in volunteers. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879: 2011-2017. 

  155. Kim, U., Park, M. H., Kim, D. H. and Yoo, H. H. (2013) Metabolite profiling of ginsenoside Re in rat urine and feces after oral administration. Food Chem. 136: 1364-1369. 

  156. Reay, J. L., Scholey, A. B., Milne, A., Fenwick, J. and Kennedy, D. O. (2009) Panax ginseng has no effect on indices of glucose regulation following acute or chronic ingestion in healthy volunteers. Br. J. Nutr. 101: 1673-1678. 

  157. Shin, S. K., Kwon, J. H., Jeong, Y. J., Jeon, S. M., Choi, J. Y. and Choi, M. S. (2011) Supplementation of cheonggukjang and red ginseng cheonggukjang can improve plasma lipid profile and fasting blood glucose concentration in subjects with impaired fasting glucose. J. Med. Food. 14: 108-113. 

  158. Ni, H. X., Yu, N. J. and Yang, X. H. (2010) The study of ginsenoside on PPAR gamma expression of mononuclear macrophage in type 2 diabetes. Mol. Biol. Rep. 37: 2975-2979. 

  159. Jung, D. H., Lee, Y. J., Kim, C. B., Kim, J. Y., Shin, S. H. and Park, J. K. (2016) Effects of ginseng on peripheral blood mitochondrial DNA copy number and hormones in men with metabolic syndrome: A randomized clinical and pilot study. Complement. Ther. Med. 24: 40-46. 

  160. Wang, C. H. and Wei, Y. H. (2017) Role of mitochondrial dysfunction and dysregulation of $Ca^{2+}$ homeostasis in the pathophysiology of insulin resistance and type 2 diabetes. J. Biomed. Sci. 24: 70. 

  161. Park, B. J., Lee, Y. J., Lee, H. R., Jung, D. H., Na, H. Y., Kim, H. B. and Shim, J. Y. (2012) Effects of Korean red ginseng on cardiovascular risks in subjects with metabolic syndrome: a double-blind randomized controlled study. Korean J. Fam. Med. 33: 190-196. 

  162. Cho, Y. H., Ahn, S. C., Lee, S. Y., Jeong, D. W., Choi, E. J., Kim, Y. J., Lee, J. G., Lee, Y. H. and Shin, B. C. (2013) Effect of Korean red ginseng on insulin sensitivity in nondiabetic healthy overweight and obese adults. Asia Pac. J. Clin. Nutr. 22: 365-371. 

  163. Yang, H., Son, G. W., Park, H. R., Lee, S. E. and Park, Y. S. (2016) Effect of Korean red ginseng treatment on the gene expression profile of diabetic rat retina. J. Ginseng Res. 40: 1-8. 

  164. Sun, Q., Meng, Q. T., Jiang, Y. and Xia, Z. Y. (2012) Ginsenoside Rb1 attenuates intestinal ischemia reperfusion induced renal injury by activating Nrf2/ARE pathway. Molecules 17: 7195-7205. 

  165. Sun, Q., Meng, Q. T., Jiang, Y., Liu, H. M., Lei, S. Q., Su, W. T., Duan, W, N., Wu, Y., Xia, Z. Y. and Xia, Z. Y. (2013) Protective effect of ginsenoside Rb1 against intestinal ischemia-reperfusion induced acute renal injury in mice. PloS one 8: e80859. 

  166. El-Sheikh, A. A. K. and Kamel, M. Y. (2016) Ginsenoside-Rb1 ameliorates lithium-induced nephrotoxicity and neurotoxicity: Differential regulation of COX-2/PGE2 pathway. Biomed. Pharmacother. 84: 1873-1884. 

  167. Xu, X., Lu, Q., Wu, J., Li, Y. and Sun, J. (2017) Impact of extended ginsenoside Rb1 on early chronic kidney disease: a randomized, placebo-controlled study. Inflammopharmacology 25: 33-40. 

  168. Tetsutani, T., Yamamura, M., Yamaguchi, T., Onoyama, O. and Kono, M. (2000) Can red ginseng control blood glucose in diabetic patients? Ginseng Rev. 28: 44-47. 

  169. De Souza, L. R., Jenkins, A. L., Sievenpiper, J. L., Jovanovski, E., Rahelic, D. and Vuksan, V. (2011) Korean red ginseng (Panax ginseng C.A. Meyer) root fractions: differential effects on postprandial glycemia in healthy individuals. J. Ethnopharmacol. 137: 245-250. 

  170. De Souza, L. R., Jenkins, A. L., Jovanovski, E., Rahelic, D. and Vuksan, V. (2015) Ethanol extraction preparation of American ginseng (Panax quinquefolius L) and Korean red ginseng (Panax ginseng C.A. Meyer): differential effects on postprandial insulinemia in healthy individuals. J. Ethnopharmacol. 159: 55-61. 

  171. Suzuki, Y. and Hikino, H. (1989) Mechanisms of hypoglycemic activity of panaxans A and B, glycans of Panax ginseng roots: effects on plasma level, secretion, sensitivity and binding of insulin in mice. Phytotherapy Research 3 : 20-24. 

  172. Takaku, T., Kameda, K., Matsuura, Y., Sekiya, K. and Okuda, H. (1990) Studies on insulin-like substances in Korean red ginseng. Planta Medica 56: 27-30. 

  173. Wang, B. X., Zhou, Q. L., Yang, M., Wang, Y., Cui, Z. Y., Liu, Y. Q. and Ikejima, T. (2003) Hypoglycemic activity of ginseng glycopeptide. Acta Pharmacol. Sin. 24: 50-54. 

  174. Wang, B. X., Zhou, Q. L., Yang, M., Wang, Y., Cui, Z. Y., Liu, Y. Q. and Ikejima, T. (2003) Hypoglycemic mechanism of ginseng glycopeptide. Acta Pharmacol. Sin. 24: 61-66 

  175. Sun, C., Chen, Y., Li, X., Tai, G., Fan, Y. and Zhou, Y. (2014) Anti-hyperglycemic and anti-oxidative activities of ginseng polysaccharides in STZ-induced diabetic mice. Food Funct. 5: 845-848. 

  176. Jiao, L., Zhang, X., Wang, M., Li, B., Liu, Z. and Liu, S. (2014) Chemical and antihyperglycemic activity changes of ginseng pectin induced by heat processing. Carbohydr. Polym. 114: 567-573. 

  177. Shen, H., Gao, X. J., Li, T., Jing, W. H., Han, B. L., Jia, Y. M., Hu, N., Yan, Z. X., Li, S. L. and Yan, R. (2018) Ginseng polysaccharides enhanced ginsenoside Rb1 and microbial metabolites exposure through enhancing intestinal absorption and affecting gut microbial metabolism. J. Ethnopharmacol. 216: 47-56. 

  178. Shishtar, E., Sievenpiper, J. L., Djedovic, V., Cozma, A. I., Ha, V., Jayalath, V. H., Jenkins, D. J., Meija, S. B., de Souza, R. J., Jovanovski, E. and Vuksan, V. (2014) The effect of ginseng (the genus Panax) on glycemic control: a systematic review and meta-analysis of randomized controlled clinical trials. PLoS One 9: e107391. 

  179. Gui, Q. F., Xu, Z. R., Xu, K. Y. and Yang, Y. M. (2016) The efficacy of ginseng-related therapies in type 2 diabetes mellitus: an updated systematic review and meta-analysis. Medicine (Baltimore) 95: e2584. 

  180. Wang, H., Reaves, L. A. and Edens, N. K. (2006) Ginseng extract inhibits lipolysis in rat adipocytes in vitro by activating phosphodiesterase 4. The Journal of Nutrition 136: 337-342. 

  181. Yuan, H. D. and Chung, S. H. (2010) Protective effects of fermented ginseng on streptozotocin-induced pancreatic beta-cell damage through inhibition of NF-kappaB. Int. J. Mol. Med. 25: 53-58. 

  182. Park, S., Ahn, I. S., Kwon, D. Y., Ko, B. S. and Jun, W. K. (2008) Ginsenpsides Rb1 and Rg1 suppress triglyceride accumulation in 3T3-L1 adipocytes and enhance beta-cell insulin secretion and viability in Min6 cells via Pka-dependent pathways. Biosci. Biotechnol. Biochem. 72: 2815-2823. 

  183. Shen, L., Xiong, Y., Wang, D. Q., Howles, P., Basford, J. E., Wang, J., Xiong, Y. Q., Hui, D. Y., Woods, S. C. and Liu, M. (2013) Ginsenoside Rb1 reduces fatty liver by activating AMP-activated protein kinase in obese rats. Journal of Lipid Research 54: 1430-1438. 

  184. Song, B., Ding, L., Zhang, H., Chu, Y., Chang, Z., Yu, Y., Guo, D., Zhang, S. and Liu, X. (2017) Ginsenoside Rb1 increases insulin sensitivity through suppressing $11{\beta}$ -hydroxysteroid dehydrogenase type I. American Journal of Translational Research 9: 1049. 

  185. Cho, W. C., Chung, W. S., Lee, S. K., Leung, A. W., Cheng, C. H. and Yue, K. K. (2006) Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. European Journal of Pharmacology 550: 173-179. 

  186. Cho, W. C., Yip, T. T., Chung, W. S., Lee, S. K., Leung, A. W., Cheng, C. H. and Yue, K. K. (2006) Altered expression of serum protein in ginsenoside Re-treated diabetic rats detected by SELDI-TOF MS. Journal of Ethnopharmacology 108: 272-279. 

  187. Kim, H. O., Park, M. J. and Han, J. S. (2011) Effects of fermented red ginseng supplementation on blood glucose and insulin resistance in type 2 diabetic patients. Journal of The Korean Society of Food Science and Nutrition 40: 696-703. 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로