$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

가상현실 특성을 반영한 VR 프로그램 기반 수업 적용 및 효과
Application and Effects of VR-Based Biology Class Reflecting Characteristics of Virtual Reality 원문보기

한국과학교육학회지 = Journal of the Korean association for science education, v.40 no.2, 2020년, pp.203 - 216  

최섭 (서울대학교) ,  김희백 (서울대학교)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 초등학교 교과 단원 '우리 몸의 소화와 순환'을 주제로 한 가상현실 기반 수업 프로그램의 개발과 적용을 통해 학생들의 인지적·정의적 측면의 향상 효과를 검증하고자 하였다. 이 연구를 위해 서울 소재 초등학교 6학년 105명의 학생을 대상으로 3차시에 걸쳐 가상현실 프로그램을 투입하고 사전 사후 모형 수행 수준 평가지를 수집하였으며, 21명의 학생들의 인터뷰 자료를 통해서 인지적·정의적 효과에 대한 학생들의 인식을 알아보았다. 이에 대한 결과는 다음과 같다. 첫째, 가상현실의 특성을 반영한 VR 프로그램을 개발함으로써 VR 콘텐츠의 학교 수업 적용 가능성을 보였다. 투입된 가상현실 프로그램 자료는 선행연구에 기반을 둔 가상현실 특성인 '조작', '감각화', '상호작용'을 반영하여 개발되었으며, 수업 시간에 프로그램의 이러한 특성들을 반영한 수업 활동을 하였다. 둘째, 가상현실 기반 생물 수업이 학생들의 '공간적 사고', '추상적 사고', 반영적 사고'와 같은 인지적 측면에 효과가 있음을 검증하였다. 인지적인 측면의 효과를 측정하기 위한 분석틀로 '구조', '기능', '시스템 표상화', '시각화', '표지' 요인으로 구성된 과학적 모형 수행 수준 분석틀을 사용하였으며, 모형 수행 수준의 변화를 비교한 결과 모든 영역에서 실험집단과 통제집단의 유의미한 차이가 있었다. 또한 학생들의 인터뷰를 통해서 어떤 가상현실의 특성이 반영되어 인지적 효과에 영향을 주었는지에 대한 학생들의 인식을 알아보았다. 셋째, 가상현실 기반 생물 수업이 '행위유발성', '현존감', '몰입감'을 높임으로써 정의적 측면에 효과가 있음을 인터뷰 자료를 통해서 확인하였다. 본 연구는 향후 가상현실 기반 생물 수업이 교실에 효과적으로 적용될 방향을 제시하는 데 기여할 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

The purpose of this study is to explore the effects of a VR(virtual reality)-based biology class on both the cognitive and affective domains by developing and applying a VR-based biology program for 6th-grade elementary school students. For this research, we developed a VR teaching material about 'd...

주제어

표/그림 (14)

참고문헌 (72)

  1. Anderson, A., & Weng, Z. (1999). VRDD: Applying virtual reality visualization to protein docking and design. Journal of Molecular Graphics and Modelling, 17(3-4), 180-186. 

  2. Assaraf, O. B. Z., & Orion, N. (2005). Development of system thinking skills in the context of earth system education. Journal of Research in Science Teaching, 42(5), 518-560. 

  3. Baek, Y. (2010). Teaching and learning in a virtual world. Seoul: Hakjisa. 

  4. Bamberger, Y. M., & Davis, E. A. (2013). Middle-school science students' scientific modelling performances across content areas and within a learning progression. International Journal of Science Education, 35(2), 213-238. 

  5. Bormann, K. (2005). Presence and the utility of audio spatialization. Presence. Teleoperators & Virtual Environments, 14(3), 278-297. 

  6. Buckley, B. C. (2000). Interactive multimedia and model-based learning in biology. International Journal Of Science Education, 22(9), 895-935. 

  7. Chang, H. Y. (2018). Students' representational competence with drawing technology across two domains of science. Science Education, 102(5), 1129-1149. 

  8. Chen, C. J. (2006). The design, development and evaluation of a virtual reality based learning environment. Australasian Journal of Educational Technology, 22(1), 39-63. 

  9. Chien, Y. T. & Jenkins, J. (1994).Virtual Reality Assessment. A report of the Task Group on Virtual Reality to the High Performance Computing and Communications and Information Technology (HPCCIT) Subcommittee of the Information and Communications Research and Development Committee of the National Science and Technology Council (NSTC). 

  10. Cho, Y. H., Hong, S. Y., & Lee, J. E. (2014). An exploratory study on learner-to-leaner interaction in a 3D virtual role-play for pre-service teachers. Journal of Korean Association for Educational Information and Media, 20(1), 27-50. 

  11. Choi, S. (2018) Making a good class. Seoul: Ebeelak press. 

  12. Choi, S., & Kim, H. (2013). The effects of animation-based instruction using "Magic School Bus" on elementary students' level of understanding and interests on plant's structure and function. Journal of Korean Elementary Science Education, 32(4), 379-392. 

  13. Choi, S., & Kim, H. (2019). Exploring the characteristics of virtual reality and its application to biology class. Biology Education, 47(3), 263-277. 

  14. Chung Dong-hun. (2017). User-based theories and practices on virtual reality. Informatization Policy, 24(1), 3-29. 

  15. Cordova, D. I., & Lepper, M. R. (1996). Intrinsic motivation and the process of learning: Beneficial effects of contextualization, personalization, and choice. Journal of Educational Psychology, 88(4), 715-730. 

  16. Dalgarno, B., & Lee, M. J. (2010). What are the learning affordances of 3­D virtual environments?. British Journal of Educational Technology, 41(1), 10-32. 

  17. De Freitas, S. (2006). Learning in immersive worlds: a review of game­based learning. Bristol, England: JISC. Retrieved August 6, 2008, from http://www.jisc.ac.uk/media/documents/programmes/elearninginnovation/gamingreport_v3.pdf 

  18. Dede, C. (2009). Immersive interfaces for engagement and learning. Science, 323(5910), 66-69. 

  19. Dede, C., Grotzer, T. A., Kamarainen, A., & Metcalf, S. J. (2017). Virtual reality as an immersive medium for authentic simulations. Virtual, augmented, and mixed realities in education (pp. 133-156). Singapore: Springer. 

  20. Dede, C., Salzman, M. C., Loftin, R. B., & Sprague, D. (1999). Multisensory immersion as a modelling environment for learning complex scientific concepts. In Feurzeig W., Roberts N. (Eds.), modelling and simulation in science and mathematics education (pp. 282-319). New York, NY: Springer. 

  21. Dede, C., Salzman, M., Loftin, R. B., & Ash, K. (2000). The design of immersive virtual learning environments: Fostering deep understandings of complex scientific knowledge. In Jacobson M. J. Jacobson & R. B. Kozma (Eds), Innovations in science and mathematics education (pp. 11-46). Mahwah, NJ: Lawrence Erlbaum Associates. 

  22. Dickey, M. D. (2005a). Brave new (interactive) worlds: A review of the design affordances and constraints of two 3D virtual worlds as interactive learning environments. Interactive Learning Environments, 13(1-2), 121-137. 

  23. Dickey, M. D. (2005b). Three-dimensional virtual worlds and distance learning: Two case studies of active worlds as a medium for distance education. British Journal of Educational Technology, 36(3), 439-451. 

  24. Dori, Y. J., & Barak, M. (2001). Virtual and physical molecular modelling: Fostering model perception and spatial understanding. Journal of Educational Technology & Society, 4(1), 61-74. 

  25. Forneris, S. G., & Peden­McAlpine, C. (2007). Evaluation of a reflective learning intervention to improve critical thinking in novice nurses. Journal of Advanced Nursing, 57(4), 410-421. 

  26. Fruland, R. M. (2002). Using immersive scientific visualizations for science inquiry: Co-construction of knowledge by middle and high school students. Proceeding of Annual Meeting of the American Educational Research Association, New Orleans, USA. 

  27. Geban, O., Askar, P., & Ozkan, I. (1992). Effects of computer simulations and problem-solving approaches on high school students. The Journal of Educational Research, 86(1), 5-10. 

  28. Gibson (1979), The ecological approach to visual perception. Boston: Houghton Mifflin. 

  29. Gibson, J. J. (1977). The theory of affordances. In R. Shaw & J. Bransford (Eds.), Perceiving, acting, and knowing: Toward an ecological psychology (pp. 67-82). Hillsdale, NJ: Erlbaum. 

  30. Gilbert, J. K., & Treagust, D. F. (2009). Introduction: Macro, submicro and symbolic representations and the relationship between them: Key models in chemical education. In D. Treagust (Ed.), Multiple representations in chemical education (pp. 1-8). Dordrecht: Springer. 

  31. Gorsky, P., & Finegold, M. (1992). Using computer simulation to restructure students' conceptions of force. Journal of Computers in Mathematics and Science Teaching, 11(2), 163-78. 

  32. Ha, H., Lee, C., & Kim, H. (2018). Exploring change in properties of conceptions represented in students' modelling with smart technology and investigating instructional supports for the change. Biology Education, 46(3), 300-317. 

  33. Hahn, J. & Lee, K. (2001). A theoretical review on designing virtual reality in the teaching-learning process. Journal of Educational Technology, 17(3), 133-163. 

  34. Hansen, J. A., Barnett, M., MaKinster, J. G., & Keating, T. (2004). The impact of three-dimensional computational modelling on student understanding of astronomical concepts: A quantitative analysis. International Journal of Science Education 26(11), 1365-1378. 

  35. Hwang, M., Kim, Y., & Cho, Y. (2014). A case study on 3d virtual role play for improving problem solving skills of elementary school pre-service teachers. Journal of Educational Technology, 30(1), 45-75. 

  36. Jonassen, D. H. (1991). Objectivism versus constructivism: Do we need a new philosophical paradigm?. Educational Technology Research and Development, 39(3), 5-14. 

  37. Kali, Y., Orion, N., & Eylon, B. S. (2003). Effect of knowledge integration activities on students' perception of the Earth's crust as a cyclic system. Journal of Research in Science Teaching, 40(6), 545-565. 

  38. Kelton, A. J. (2007). Second life: Reaching into the virtual world for real-world learning. Educause Center for Applied Research, 2007(17), 1-13. 

  39. Kennison, M. M. (2006). The evaluation of students' reflective writing for evidence of critical thinking. Nursing Education Perspectives, 27(5), 269-273. 

  40. Kim, J. & Kim, Y. (1988). Instructional methods and educational technology. Seoul: Hyungseol. 

  41. Kim, S., & Han, J. (2017). A study on characteristics of sound visualizationbased VR contents. Journal of the Korea Institute of the Spatial Design, 12(6), 243-252. 

  42. Kim, Y. & Chung, W.(1995). An investigation of elementary school children's conceptions on the structure and function of the human body. Journal of the Korean Association for Research in Science Education, 15(1), 6-16. 

  43. Kirschner, P. A. (2002). Can we support CSCL? Educational, social and technological affordances for learning. In P. A. Kirschner (Ed.), Three worlds of CSCL: can we support CSCL? (pp. 7-47). Heerlen, Netherlands: Open University of the Netherlands. 

  44. Kolb D. (1984). The process of experiential learning. Experiential learning: experience as the source of learning and development (pp. 21-38). Englewood Cliffs, New Jersey: Prentice­Hall. 

  45. Kukkonen, J. E., Karkkainen, S., Dillon, P., & Keinonen, T. (2014). The effects of scaffolded simulation-based inquiry learning on fifth-graders' representations of the greenhouse effect. International Journal of Science Education, 36(3), 406-424. 

  46. Larsen, C. R., Soerensen, J. L., Grantcharov, T. P., Dalsgaard, T., Schouenborg, L., Ottosen, C., & Ottesen, B. S. (2009). Effect of virtual reality training on laparoscopic surgery: randomised controlled trial. BMJ, 338: b1802. 

  47. Lee, E. A. L., Wong, K. W., & Fung, C. C. (2010). How does desktop virtual reality enhance learning outcomes? A structural equation modelling approach. Computers & Education, 55(4), 1424-1442. 

  48. Leem, J. (2001). An analytical study on the concept of virtual education and cyber education. Journal of Educational Technology, 17(3), 165-194. 

  49. Mayer, R. E. (1999). Multimedia aids to problem-solving transfer. International Journal of Educational Research, 31(7), 611-623. 

  50. McFarlane, A., Sparrowhawk, A. & Heald, Y. (2002). Report on the educational use of games. Cambridge: Teachers Evaluating Educational Media. 

  51. MacKnight, C., Dillon, A. & Richardson, J. (1991). Hypertext in context. Cambridge: Cambridge University Press. 

  52. Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt, W., & Davis, T. J. (2014). Effectiveness of virtual reality-based instruction on students' learning outcomes in K-12 and higher education: A metaanalysis. Computers & Education, 70(2014), 29-40. 

  53. Mezirow, J. (1991). Transformative dimensions of adult learning. San Francisco: Jossey-Bass. 

  54. Mezirow, J. (1998). On critical reflection. Adult Education Quarterly, 48(3), 185-198. 

  55. Mohan, L., Chen, J., & Anderson, C. W. (2009). Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching, 46(6), 675-698. 

  56. Monaghan, J. M., & Clement, J. (1999). Use of a computer simulation to develop mental simulations for understanding relative motion concepts. International Journal of Science Education, 21(9), 921-944. 

  57. Oh, I.(2005). Human rights education process incorporating experiential learning theory and web-based instruction. Journal of Corporate Education and Talent Research, 7(1), 75-93. 

  58. Park, Y., Shim, K., Kim, H., Kim, J., Park, J., & Ryu, H. (2001). Exploring application ways of virtual reality technology in science education. Journal of the Korean Association for Research in Science Education, 21(4), 725-737. 

  59. Pasqualotti, A., & Freitas, C. M. D. S. (2002). MAT3D: A virtual reality modelling language environment for the teaching and learning of mathematics. CyberPsychology & Behavior, 5(5), 409-422. 

  60. Psotka, J. (1995). Immersive training systems: Virtual reality and education and training. Instructional Science, 23(5-6), 405-431. 

  61. Rheingold, H. (1991). Virtual reality (pp. 345-47). New York: Touchstone, 

  62. Rieber, L. P. (2005). Multimedia learning in games, simulations, and microworlds. In R. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 549-567). New York: Cambridge University Press. 

  63. Sen, P. K., & Puri, M. L. (1971). Nonparametric methods in multivariate analysis. New York: John Wiley & Sons. 

  64. Shim, K., Kim, H., Ryu, S., Kim, H., & Park, Y. (2003). The effect of biology educational material based on virtual reality technology on the knowledge achievement -The structure and function of eye-. Journal of the Korean Association for Research in Science Education, 23(1), 1-8. 

  65. Slater, M. (1999). Measuring presence: A response to the Witmer and Singer presence questionnaire. Presence, 8(5), 560-565. 

  66. Sweeny, L. B., & Sterman, J. D. (2000). Bathtub dynamics: Preliminary results of a systems thinking inventory. Proceeding of International System Dynamics Conference, Bergen, Norway. 

  67. Tatli, Z., & Ayas, A. (2013). Effect of a virtual chemistry laboratory on students' achievement. Journal of Educational Technology & Society, 16(1), 159-170. 

  68. Tuysuz, C. (2010). The effect of the virtual laboratory on students' achievement and attitude in chemistry. International Online Journal of Educational Sciences, 2(1), 37-53. 

  69. Winn, W. (1993). A conceptual basis for educational applications of virtual reality. Technical Publication R-93-9, Human Interface Technology Laboratory of the Washington Technology Center. Seattle: University of Washington. 

  70. Won, M., Mocerino, M., Tang, K. S., Treagust, D. F., & Tasker, R. (2019). Interactive immersive virtual reality to enhance students' visualisation of complex molecules. In Schultz M., Schmid S., & Lawrie G. (Eds.), Research and practice in chemistry education (pp. 51-64). Singapore: Springer. 

  71. Yim, Sun Bin. (1996). Virtual reality as a new learning environment. Journal of Educational Technology, 12(2), 189-205. 

  72. Zacharia, Z. (2003). Beliefs, attitudes, and intentions of science teachers regarding the educational use of computer simulations and inquirybased experiments in physics. Journal of Research in Science Teaching, 40(8), 792-823. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로