$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

명태(Gadus chalcogrammus)의 일차 간세포 배양에서 온도 스트레스에 따른 HSP70 mRNA와 단백질 발현
Expression of HSP70 mRNA and Protein based on the Thermal Stress in the Primary Hepatocyte Culture of Walleye Pollock (Gadus chalcogrammus) 원문보기

Journal of environmental science international = 한국환경과학회지, v.29 no.6, 2020년, pp.633 - 641  

김소선 (부산대학교 화학과) ,  이창주 (부산대학교 화학과) ,  박장수 (부산대학교 화학과)

Abstract AI-Helper 아이콘AI-Helper

Water temperature is one of the most important factors of fish survival, affecting the habitat, migration route, development, and reproduction. This experiment studied the induction level of heat shock protein (HSP70) mRNA and protein in a walleye pollock (Gadus chalcogrammus) primary hepatocyte cul...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 수온은 해양 생물의 성장 및 생존에 필수적인 기본 요소 중 하나이다. 특히 간 조직은 여러 가지 대사반응에 관여하는 중요한 장기 중 하나로써, 본 연구에서는 배양 온도에 따라 간세포에서 유도되는 HSP70의 발현을 연구함으로써 명태(G. chalcogrammus)의 온도 스트레스 대한 영향을 연구하는데 목적이 있다. 해양 생물에 대한 이전의 연구들에서 온도 스트레스에 대한 HSP의 조직 특이적 발현 연구는 입증되었다(Dyer et al.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
열충격단백질이란 무엇인가? 열충격단백질(Heat Shock Proteins; HSPs)은 원핵생물에서부터 진핵생물까지 잘 보존되어 있고, 정상 상태에서도 존재하지만, 열, 활성산소, pH, 중금속, 박테리아 감염과 같은 외부 환경에 노출이 되면 생체 내에서 급격하게 발현이 되는 스트레스 단백질이다(Guerriero etal., 2002; Dong et al.
어류는 변온 동물임에도 불고하고 기후변화에 따른 수온 변화에 크게 영향을 받는 이유는 무엇인가? 2011a), 서식 온도의 한계를 넘어서는 급격한 온도변화는 어류의 여러 조직에서 활성 산소와 같은 산화적 스트레스(oxidative stress)를 생성시켜 생화학적 및 생리학적 문제를 발생시키게 된다(Parihar et al., 1996;Lushchak and Bagnyukova, 2006).
HSP의 분자량에 따른 분류는 무엇인가? HSP는 유기체의 발달 동안 형태학적 변화 및 세포 방어 그리고 분자 chaperones으로써 잘못 접힌 펩티드의 재 접힘에 관여함으로써 생체 내에서 스트레스로부터 방어 역할을 한다 (Tomanek, 2010). HSP들은 분자량을 기초로 하여 HSP90 (85-90kDa), HSP70 (68-73 kDa) 및 저분자HSP (16-47 kDa) 등의 그룹으로 나누어지며, HSP들 중에서도 HSP70은 박테리아에서부터 포유류까지 넓게 분포하고 있으며 환경적 스트레스에 크게 반응을 한다 (Podrabsky and Somero 2004; Somero, 2010). 명태 (Gadus chalcogrammus)는 캄차카 반도와 베링해에서부터 한국의 동해안 연안과 북아메리카 중앙 캘리포니아 연안에 이르기까지 널리 서식 한다(Carr and Marshall, 2008; Page et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (38)

  1. Airaksinen, S., Rabergh, C. M. I., Sistonen, L., Nikinmaa, M., 1998, Effects of heat shock and hypoxia on protein synthesis in rainbow trout (Oncorhynchus mykiss) cells, Journal of Experimental Biology, 201, 2543-2551. 

  2. Bakkala, R. G., 1993, Structure and historical changes in the ground fish complex of the Eastern Bering Sea, U.S. Department of Commerce, NOAA Technical Report, 114, 91. 

  3. Brierley, A. S., Kingsford, M. J., 2009, Impacts of climate change on marine organisms and ecosystems, Current biology, 19, 602-614. 

  4. Carr, S. M., Marshall, H. D., 2008, Phylogeographic analysis of complete mtDNA genomes from Walleye Pollock (Gadus chalcogrammus Pallas, 1811) shows an ancient origin of genetic biodiversity, Mitochondrial DNA, 19, 490-496. 

  5. Chang, Z., Lu, M., Kim, S. S., Park, J. S., 2014, Potential role of HSP90 in mediating the interactions between estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) signaling pathways, Toxicology Letters, 226, 6-13. 

  6. Dietz, T. J., 1994, Acclimation of the threshold induction temperatures for 70-kDa and 90-kDa heat shock proteins in the fish Gillichthys mirabilis, Journal of Experimental Biology, 188, 333-338. 

  7. Dietz, T. J., Somero, G. N., 1993, Species- and tissue-specific synthesis patterns for heat-shock proteins HSP70 and HSP90 in several marine teleost fishes, Physiological Zoology, 66, 863-880. 

  8. Doney, S. C., Ruckelshaus, M., Emmett, J., Barry, J. P., Chan, F., English, C. A., Galindo, H. M., Grebmeier, J. M., Hollowed, A. B., Knowlton, N., Polovina, J., Rabalais, N. N., Sydeman, W. J., Talley, L. D., 2012, Climate change impacts on marine ecosystems, Annual Review of Marine Science, 4, 11-37. 

  9. Dong, Y., Dong, S., Ji, T., 2008, Effect of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus selenka. Aquaculture, 275(1-4), 329-334. 

  10. Dyer, S. D., Dickson, K. L., Zimmerman, E. G., 1991, Tissue-specific patterns of synthesis of heat-shock proteins and thermal tolerance of the fathead minnow (Pimephales promelas), Canadian Journal of Zoology, 69, 2021-2027. 

  11. FAO, 2018, Fish Stat. Theragra chalcogramma. 

  12. Feder, M. E., Hofmann, G. E., 1999, Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology, Annual Review of Physiology, 61, 243-282. 

  13. Gribanov, D. V., Timofeyev, M. A., 2011, The role of the heat shock proteins (HSP70 and sHSP) in the thermotolerance of freshwater amphipods from contrasting habitats, Journal of Thermal Biology, 36, 142-149. 

  14. Guerriero, G., Finizio, D., Ciarcia, A. G., 2002, Stress-induced changes in plasma antioxidants of aquacultured sea bass, Dicentrarchus labrax, Comparative Biochemistry and Physiology, 132, 205-11. 

  15. Karl, I., Sorensen, J. G., Loeschcke, V., Fischer, K., 2009, HSP70 expression in the copper butterfly Lycaena tityrus across altitudes and temperatures. Journal of Evolutionary Biology, 22, 172-178. 

  16. Koban, M., Yup, A. A., Agellon, L. B., Powers, D. A., 1991, Molecular adaptation to environmental temperature: heat shock response of the eurythermal teleost Fundulus heteroclitus, Molecular Marine Biology and Biotechnology, 1, 1-17. 

  17. Lee, Y., Kim, D., 2010, Measuring surface water temperature effects on the walleye Pollock fishery production using a Translog cost function approach. Environmental and Resource Economics, 19 (4), 897-916. 

  18. Livak, K. J., Schmittgen, T. D., 2001, Analysis of relative gene expression data using realtime quantitative PCR and the $2^{{\Delta}{\Delta}C(T)}$ Method, Methods, 25(4): 402-408. 

  19. Lushchak, V. I., Bagnyukova, T. V., 2006, Temperature increase results in oxidative stress in goldfish tissues. 2. Antioxidant and associated enzymes, Comparative Biochemistry and Physiology Part C, 143 : 36-41. 

  20. Mazur, C. F., 1996, The heat shock protein response and physiological stress in aquatic organisms, Doctoral thesis, University of British Columbia. 

  21. Nakatani, T., Maeda, T, 1984, Thermal effect on the development of walleye pollock eggs and their upward speed to the surface, Bulletin of the Japanese Society of Scientific Fisheries, 50, 937-942. 

  22. Nakatani, T., Sugimoto, K., Takatsu, T., Takahashi, T., 2003, Environmental factors in Funka Bay, Hokkaido, affecting the year class strength of walleye pollock, Theragra chalcogramma, Bulletin of the Japanese Society of Fisheries Oceanography, 67, 23-28. 

  23. Page, L. M., Espinosa-Perez, H., Findley, L. T., Gilbert, C. R., Lea, R. N., Mandrak, N. E., Mayden, R. L., Nelson, J. S., 2013, Common and Scientific names of Fishes from the United States, 7th edition. 34 American Fisheries Society, Canada, Mexico Special Publication, 243. 

  24. Parihar, M. S., Dubey, A. K., Faveri, T., Prakash, P., 1996, Changes in lipid peroxidation, superoxide dismutase activity, ascorbic acid and phospholipids content in liver of freshwater catfish Heteropneustes fossilis exposed to elevated temperature, Journal of Thermal Biology, 21, 323-330. 

  25. Parsell, D. A., Lindquist, S., 1993, The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins, Annual Review of Genetics, 27, 437-496. 

  26. Perry, A. L., Low, P. J., Ellis, J. R., Reynolds, J. D., 2005, Climate change and distribution shifts in marine fishes, Science, 308, 1912-1915. 

  27. Piscopo, M., Notariale, R., Rabbito, D., Ausio, J., Olanrewaju, O. S., Guerriero, G., 2018, Mytilus galloprovincialis (Lamarck, 1819) spermatozoa: hsp70 expression and protamine-like protein property studies, Environmental Science and Pollution Research, 25(13), 12957-12966. 

  28. Podrabsky, J. E., Somero, G. N., 2004, Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus, Journal of Experimental Biology, 207, 2237-2254. 

  29. Quinn, N. L., McGowan, C. R., Cooper, G. A., Koop, B. F., Davidson, W. S., 2011, Identification of genes associated with heat tolerance in Arctic charr exposed to acute thermal stress, Physiological Genomics, 43, 685-696. 

  30. Reddy, D. V., Nagbhushanam, P., Ramesh, G., 2013, Turnover time of Tural and Rajvadi hot spring waters, Maharashtra, India, Current Science, 104(10), 1419-1424. 

  31. Scalici, M., Traversetti, L., Spani, F., Malafoglia, V., Colamartino, M., Persichini, T., Cappello, S., Mancini, G., Guerriero, G., Colasanti, M., 2017, Shell fluctuating asymmetry in the seadwelling benthic bivalve Mytilus galloprovincialis (Lamarck, 1819) as morphological markers to detect environmental chemical contamination, Ecotoxicology, 26, 396. 

  32. Shatilina, Z. M., Riss, H. W., Protopopova, M. V., Trippe, M., Meyer, E. I., Pavlichenko, V. V., Bedulina, D. S., Axenov-Gribanov, D. V., Timofeyev, M. A., 2011, The role of the heat shock proteins (HSP70 and sHSP) in the thermotolerance of freshwater amphipods from contrasting habitats, Journal of Thermal Biology, 36, 142-149. 

  33. Somero, G. N., 2002, Thermal physiology and vertical zonation of intertidal animals: optima, limits and costs of living, Integrative and Comparative Biology, 42(4): 780-789. 

  34. Somero, G. N., 2010, The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers', Journal of Experimental Biology, 213, 912-920. 

  35. Sorensen, J. G., Kristensen, T. N., Loeschcke, V., 2003, The evolutionary and ecological role of heat shock proteins, Ecology Letters, 6, 1025-1037. 

  36. Tomanek, L., 2002, The heat-shock response: its variation, regulation and ecological importance in intertidal gastropods (genus Tegula), Integrative and Comparative Biology, 42, 797-807. 

  37. Wood, L. A., Brown, I. A., Youson, J. H., 1999, Tissue and developmental variations in the heat shock response of sea lampreys (Petromyzon marinus): effects of an increase in acclimation temperature, Comparative Biochemistry and Physiology A, 123, 35-42. 

  38. Yoo, H. K., Byun, S. G., Yamamoto, J., Sakurai, Y., 2015, The Effect of Warmer Water Temperature of Walleye Pollock (Gadus chalcogrammus) Larvae, Journal of the Korean Society of Marine Environment & Safety, 21(4), 339-346. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로