$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 토양 내 미세플라스틱의 축적경로 및 분석기법 연구 동향
Research Trend on the Accumulation Routes of Microplastics in Soil and Their Analytical Methodologies 원문보기

공업화학 = Applied chemistry for engineering, v.31 no.4, 2020년, pp.360 - 367  

최형준 (세명대학교 환경안전시스템공학과) ,  안진성 (세명대학교 환경안전시스템공학과) ,  최석순 (세명대학교 환경안전시스템공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 미세플라스틱의 토양 내 축적경로와 분포현황에 대해 살펴보고, 토양시료 내 미세플라스틱 분석기법을 요약 제시하였다. 토양으로부터 미세플라스틱을 분리해내는 밀도차 선별 및 방해물질 제거과정과 정성/정량분석 기법으로써 pyrolysis gas chromatography mass spectrometry, µ-Raman spectrometry, fourier transform infrared spectrometry와 microscope 방법의 기본원리 및 분석의 한계점에 대해 살펴보았다. 미세플라스틱 매개 유해물질(첨가제 및 흡착물질)의 분석을 위한 화학적 추출방법을 인체 경구 섭취경로에 대한 in vitro 생물학적접근성 평가법을 중심으로 조사하였다. 본 연구에서 제시한 토양 중 미세플라스틱 분석기법의 원리를 바탕으로 매질상태, 오염수준 및 시료수량 등을 고려한 합리적인 분석기법의 선정이 가능하리라 기대된다.

Abstract AI-Helper 아이콘AI-Helper

In this study, the accumulation and distribution routes of microplastics in soil environment were examined, and their analytical methodologies were summarized. Density separation and removal process of inhibition materials were introduced for the separation of microplastics in soil and the basic pri...

Keyword

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 논문에서는 해양환경에 비해 미세플라스틱의 기원과 거동(fate) 에 대한 연구가 극히 제한적인[9,10] 토양 환경에 대해 미세플라스틱의 기원, 분포현황 및 분석기법과 관련된 연구 현황을 분석하고 요약 ⋅ 정리하였다.
  • 본 연구에서는 토양 중 미세플라스틱의 축적경로 및 분포현황과 더불어 다양한 분석기법에 대해 조사하였다. 바이오매스 및 하수슬러지 기원의 퇴비 사용과 농업용 멀칭필름 사용이 주요한 토양환경 내 미세플라스틱 축적경로로 판단된다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
미세플라스틱이 대형동물에 물리적 영향을 끼치는 방법은? 미세플라스틱은 크게 얽힘(entanglement) 및 섭취(ingestion) 현상을 통해 대형동물에 물리적 영향을 끼치는 것으로 알려져 있다. 얽힘은 그물 조각이나 폐 구조물 등에 생물이 묶이거나 끼이는 현상으로 피부상처, 먹이활동저하 및 포식자로부터의 생존능력저하를 야기할 수 있다. 섭취는 플라스틱을 먹이로 착각하여 섭식하는 현상으로, 내장 상처유발 및 막힘을 야기할 수 있다. 나노 사이즈의 미세플라스틱을 나노플라스틱(nanoplastics)이라 별도로 명명하기도 하는데, 이러한 나노플라스틱 입자는 큰 비표면적(specific surface area)으로 인해 잔류 농약 등 외부 유해물질에 대한 흡착능이 뛰어나며[6] 생물체의 세포막 (plasma cell membrane)을 투과하여, 분자 수송체 역할을 수행함으로써 생물체에 독성을 나타내는 것으로 보고된 바 있다[7,8].
플라스틱(plastics)이란? 플라스틱(plastics)은 오일 또는 가스로부터 추출된 단량체(monomer) 의 중합(polymerization)으로부터 유도된 합성 유기 중합체이다. 가공이 쉽고 생산비용이 저렴하며 다양한 환경조건에 노출되어도 변형이나 손상이 적어 실생활에 광범위하게 사용되어왔다.
미세플라스틱(microplastics)의 종류를 구분하면? 미세플라스틱(microplastics)은 직경 5 mm 이하의 작은 플라스틱 입자를 가리키며[4], 다양한 산업공정으로부터 직접 생산된 1차 미세플라스틱(primary microplastics)과 생분해(bio-degradation), 광분해(photo-degradation), 열분해(thermal-degradation), 가수분해(hydrolysis) 등 물리 화학적 및 생물학적 분해를 통해 생성된 2차 미세플라스틱(secondary microplastics)으로 구분할 수 있다. 1차 미세플라스틱은 개인위생용품 (personal care products)에 함유되어있는 구형(sphere)의 미세비드(microbead) 및 세탁과정 중 발생할 수 있는 미세섬유(microfiber)를 포함한다(Table 1).
질의응답 정보가 도움이 되었나요?

참고문헌 (59)

  1. C. M. Rochman, M. A. Browne, B. S. Halpern, B. T. Hentschel, E. Hoh, H. K. Karapanagioti, L. M. Rios-Mendoza, H. Takada, S. Teh, and R. C. Thompson, Classify plastic waste as hazardous, Nature, 494, 169-171 (2013). 

  2. J. M. Coe, G. B. Antonelis, and K. Moy, Taking control of persistent solid waste pollution, Mar. Pollut. Bull., 139, 105-110 (2019). 

  3. R. Geyer, J. R. Jambeck, and K. L. Law, Production, use, and fate of all plastics ever made - Supplementary information, Sci. Adv., 3(7), 19-24 (2017). 

  4. R. C. Thompson, Y. Olsen, R. P. Mitchell, A. Davis, S. J. Rowland, A. W. G. John, D. McGonigle, and A. E. Russell, Lost at sea: Where is all the plastic?, Science, 304, 838 (2004). 

  5. M. S. Helmberger, L. K. Tiemann, and M. J. Grieshop, Towards an ecology of soil microplastics, Funct. Ecol., 34(3), 550-560 (2020). 

  6. P. Wang, E. Lombi, F. J. Zhao, and P. M. Kopittke, Nanotechnology: A new opportunity in plant sciences, Trends Plant Sci., 21, 699-712 (2016). 

  7. J. Wang, S. Lv, M. Zhang, G. Chen, T. Zhu, S. Zhang, Y. Teng, P. Christie, and Y. Luo, Effects of plastic film residues on occurrence of phthalates and microbial activity in soils, Chemosphere, 151, 171-177 (2016). 

  8. A. B. Morales-Diaz, H. Ortega-Ortiz, A. Juarez-Maldonado, G. Cadenas-Pliego, S. Gonzalez-Moralesand A. Benavides-Mendoza, Application of nanoelements in plant nutrition and its impact in ecosystems, Adv. Nat. Sci. Nanosci. Nanotechnol., 8, 13 (2017). 

  9. M. C. Rillig, Microplastic in terrestrial ecosystems and the soil?, Environ. Sci. Technol., 46(12), 6453-6454 (2012). 

  10. Z. Steinmetz, C. Wollmann, M. Schaefer, C. Buchmann, J. David, J. Troger, K. Munoz, O. Fror, and G. E. Schaumann, Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?, Sci. Total Environ., 550, 690-705 (2016). 

  11. N. Weithmann, J. N. Moller, M. G. J. Loder, S. Piehl, C. Laforsch, and R. Freitag, Organic fertilizer as a vehicle for the entry of microplastic into the environment, Sci. Adv., 4(4), 1-7 (2018). 

  12. M. Blasing and W. Amelung, Plastics in soil: Analytical methods and possible sources, Sci. Total Environ., 612, 422-435 (2018). 

  13. WRAP, Using Compost in Agriculture and Field Horticulture, Waste and Resources Action Programme (2002). 

  14. S. M. Mintenig, I. Int-Veen, M. G. J. Loder, S. Primpke, and G. Gerdts, Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging, Water Res., 108, 365-372 (2017). 

  15. A. M. Mahon, B. O'Connell, M.G. Healy, I. O'Connor, R. Officer, R. Nash, and L. Morrison, Microplastics in sewage sludge: Effects of treatment, Environ. Sci. Technol., 51(2), 810-818 (2017). 

  16. L. Nizzetto, M. Futter, and S. Langaas, Are agricultural soils dumps for microplastics of urban origin?, Environ. Sci. Technol., 50(20), 10777-10779 (2016). 

  17. Y. Zhao, Y. Li, J. Wang, H. Pang, and Y. Li, Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils, Soil Tillage Res., 155, 363-370 (2016). 

  18. Y. Fan, R. Ding, and S. Kang, Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland, Agric. Water Manag., 179, 122-131 (2017). 

  19. E. Espi, A. Salmeron, A. Fontecha, Y. Garcia, and A. I. Real, Plastic films for agricultural applications, J. Plast. Film Sheeting, 22(2), 85-102 (2006). 

  20. L. Ramos, G. Berenstein, E. A. Hughes, A. Zalts, and J. M. Montserrat, Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina, Sci. Total Environ., 523, 74-81 (2015). 

  21. J. S. Hanvey, P. J. Lewis, J. L. Lavers, N. D. Crosbie, K. Pozo, and B. O. Clarke, A review of microplastics in analytical techniques for quantifying sediments, Anal. Methods, 9(9), 1369-1383 (2017). 

  22. M. T. Nuelle, J. H. Dekiff, D. Remy, and E. Fries, A new analytical approach for monitoring microplastics in marine sediments, Environ. Pollut., 184, 161-169 (2014). 

  23. X. Han, X. Lu, and R. D. Vogt, An optimized density-based approach for extracting microplastics from soil and sediment samples, Environ. Pollut., 254, 113009 (2019). 

  24. K. J. McDermid, and T. L. McMullen, Quantitative analysis of small-plastic debris on beaches in the Hawaiian archipelago, Mar. Pollut. Bull., 48, 790-794 (2004). 

  25. D. A. Cooper, and P. L. Corcoran, Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii, Mar. Pollut. Bull., 60(5), 650-654 (2010). 

  26. G. Liebezeit, and F. Dubaish, Microplastics in beaches of the East Frisian Islands Spiekeroog and Kachelotplate, Bull. Environ. Contam. Toxicol., 89(1), 213-217 (2012). 

  27. H. K. Imhof, N. P. Ivleva, J. Schmid, R. Niessner, and C. Laforsch, Contamination of beach sediments of a subalpine lake with microplastic particles, Curr. Biol., 23(19), R867-R868 (2013). 

  28. M. Eriksen, S. Mason, S. Wilson, C. Box, A. Zellers, W. Edwards, H. Farley, and S. Amato, Microplastic pollution in the surface waters of the Laurentian Great Lakes, Mar. Pollut. Bull., 77, 177-182 (2013). 

  29. M. Cole, H. Webb, P. K. Lindeque, E. S. Fileman, C. Halsband, and T. S. Galloway, Isolation of microplastics in biota-rich seawater samples and marine organisms, Sci. Rep., 4, 1-8 (2014). 

  30. E. Fries, J. H. Dekiff, J. Willmeyer, M. T. Nuelle, M. Ebert, and D. Remy, Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy, Environ. Sci.: Processes Impacts, 15, 1949-1956 (2013). 

  31. M. Bergmann, L. Gutow, M. Klages (Eds.), Methodology Used for the Detection and Identification of Microplastics - A Critical Appraisal, 201-227, Berlin (2015). 

  32. L. V. Cauwenberghe, A. Vanreusel, J. Mees, and C. R. Janssen, Microplastic pollution in deep-sea sediments, Environ. Pollut., 182, 495-499 (2013). 

  33. M. Cole, P. Lindeque, E. Fileman, C. Halsband, R. Goodhead, J. Moger, and T. S. Galloway, Microplastic ingestion by zooplankton, Environ. Sci. Technol., 47, 6646-6655 (2013). 

  34. F. Murray and P. R. Cowie, Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758), Mar. Pollut. Bull., 62, 1207-1217 (2011). 

  35. T. S. Galloway, Matthew Cole, and C. Lewis, Interactions of microplastic debris throughout the marine ecosystem, Nat. Ecol. Evol., 1, 116 (2017). 

  36. Z. Sobhani, X. Zhang, C. Gibson, R. Naidu, M. Megharaj, and C. Fang, Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): Down to 100 nm, Water Res., 174, 115658 (2020). 

  37. V. Hidalgo-Ruz, L. Gutow, R. C. Thompson, and M. Thiel, Microplastics in the marine environment: A review of the methods used for identification and quantification, Environ. Sci. Technol., 46, 3060-3075 (2012). 

  38. J. P. Harrison, J. J. Ojeda, and M. E. Romero-Gonzalez, The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments, Sci. Total Environ., 416, 455-463 (2012). 

  39. J. P. W. Desforges, M. Galbraith, N. Dangerfield, and P. S. Ross, Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean, Mar. Pollut. Bull., 79, 94-99 (2014). 

  40. B. J. Laglbauer, M. R. Franco-Santos, M. Andreu-Cazenave, L. Brunelli, M. Papadatou, A. Palatinus, M. Grego, and T. Deprez, Macrodebris and microplastics from beaches in Slovenia, Mar. Pollut. Bull., 89, 356-366 (2014). 

  41. A. Mathalon and P. Hill, Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia, Mar. Pollut. Bull., 81, 69-79 (2014). 

  42. Y. K. Song, S. H. Hong, M. Jang, G. M. Han, M. Rani, J. Lee, and W. J. Shim, A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples, Mar. Pollut. Bull., 93, 202-209 (2015). 

  43. J. Wang, J. Peng, Z. Tan, Y. Gao, Z. Zhan, Q. Chen, and L. Cai, Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals, Chemosphere, 171, 248-258 (2017). 

  44. W. J. Shim, S. H. Hong, and S. E. Eo, Identification methods in microplastic analysis: A review, Anal. Methods, 9(9), 1384-1391 (2017). 

  45. G. Liu, Z. Zhu, Y. Yang, Y. Sun, F. Yu, and J. Ma, Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater, Environ. Pollut., 246, 26-33 (2019). 

  46. J. Wang, X. Liu, Y. Li, T. Powell, X. Wang, G. Wang, and P. Zhang, Microplastics as contaminants in the soil environment: A mini-review, Sci. Total Environ., 691, 848-857 (2019). 

  47. P. Liu, L. Qian, H. Wang, X. Zhan, K. Lu, C. Gu, and S. Gao, New insights into the aging behavior of microplastics accelerated by advanced oxidation processes, Environ. Sci. Technol., 53(7), 3579-3588 (2019). 

  48. J. Yang, Q. Sun, Ge Dong, S. T. Ata-Ul-Karim, and D. Zhou, Effects of soil environmental factors and UV aging on $Cu^{2+}$ , Environ. Sci. Pollut. Res., 26, 23027-23036 (2019) 

  49. A. L. Juhasz, J. Weber, and E. Smith, Influence of saliva, gasric and intestinal phases on the prediction of As relative bioavailiablity using the Unified Bioaccessibility Research Group of Europe Method (UBM), J. Hazard. Mater., 197, 161-168 (2011). 

  50. N. Yin, H. Du, Z. Zhang, X. Cai, Z. Li, G. Sun, and Y. Cui, Variability of arsenic bioaccessibility and metabolism in soils by human gut microbiota using different in vitro methods comnited with SHIME, Sci. Total Environ., 566-567, 1670-1677 (2016). 

  51. M. E. Kelley, S. Brauning, R. Schoof, and M. Ruby, Assessing Oral Bioavailability of Metals in Soil, Battelle Press, Columbus (2002). 

  52. M. V. Ruby, A. Davis, R. Schoof, S. Eberle, and C. M. Sellstone, Estimation of lead and arsenic bioavailability using a physiologically based extraction test, Environ. Sci. Technol., 30, 422-430 (1996). 

  53. K. James, R. E. Peters, M. R. Cave, M. Wickstrom, and S. D. Siciliano, In vitro prediction of polycyclic aromatic hydrocarbon bioavailability of 14 different incidentally ingested soils in juvenile swine, Sci. Total Environ., 618, 682-689 (2018). 

  54. S. Zhang, C. Li, Y. Li, R. Zhang, P. Gao, X. Cui, and L. Q. Ma, Bioaccessibility of PAHs in contaminated soils: Comparison of five in vitro methods with Tenax as a sorption sink, Sci. Total Environ., 601-602, 968-974 (2017). 

  55. C. M. Bailey-Hytholt, T. Puranik, A. Tripathi, and A. Shukla, Investigating interactions of phthalate environmental toxicants with lipid structures, Colloids Surf. B, 190, 110923 (2020). 

  56. X. Chen, A. Singh, and D.D. Kitts, In-vitro bioaccessibility and bioavailability of heavy metals in mineral clay complex used in natural health products, Sci. Rep., 10, 8823 (2020). 

  57. A. Guerra, L. Etienne-Mesmin, V. Livrelli, S. Denis, S. Blanquet-Diot, and M. Alric, Relevance and challenges in modeling human gastric and small intestinal digestion, Trends Biotechnol., 30(11), 591-600 (2012). 

  58. J. Sun, X. Dai, Q. Wang, M. C. M. van-Loosdrecht, Bi. J. Ni, Microplastics in wastewater treatment plants: Detection, occurrence and removal, Water Res., 152, 21-37 (2019) 

  59. R. Scalenghe, Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options, Heliyon, 4, e00941 (2018). 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로