$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

리튬 이온 전지의 분리막으로 사용하기 위한 복합 고분자 막의 동향
Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery 원문보기

멤브레인 = Membrane Journal, v.30 no.4, 2020년, pp.228 - 241  

오석현 (연세대학교 언더우드국제대학 융합과학공학부 나노과학공학) ,  파텔 라즈쿠마 (연세대학교 언더우드 국제대학 융합과학공학부 에너지환경과학공학)

초록
AI-Helper 아이콘AI-Helper

리튬 이온 전지의 양극과 음극 사이에 물리적인 층을 만들어주는 분리막은 분리막의 품질에 따라 리튬 이온 전지의 성능을 결정함에 따라 많은 관심을 받고 있다. 일반적으로 전기화학적 안정성과 적절한 역학적 강도를 갖고 있는 폴리에틸렌폴리프로필렌으로 구성된 다공성 막이 리튬 이온 전지의 분리막으로 사용된다. 하지만 폴리에틸렌과 폴리프로필렌의 낮은 열 저항성과 젖음성으로 인해 리튬 이온 전지의 잠재력을 충분히 끌어내지 못한다. 녹는점 이상의 온도에 도달하게 되면 분리막의 구조가 변형되고 리튬 이온 전지는 단락된다. 분리막의 낮은 젖음성은 낮은 이온전도도와 부합하고, 이는 전지의 저항을 상승시킨다. 이러한 폴리에틸렌과 폴리프로필렌 분리막의 단점을 극복하고자 이중 전기방사방법, 코팅 층 도포 방법, 코어 셸 구조 형성 방법, 제지법 등 여러 가지 방법들이 연구되었다. 언급된 방법들로 합성된 분리막들은 열 저항성과 젖음성이 크게 향상되었고 유연성과 인장 강도 같은 역학적 특성도 향상되었다. 본 리뷰 논문에는 각기 다른 방법으로 형성된 리튬이온 전지의 분리막에 대해서 다루고 있다.

Abstract AI-Helper 아이콘AI-Helper

Separators, which produces physical layer between a cathode and anode, are getting enormous attention as the quality of the separator determines the performance of lithium ion batteries (LIBs). Porous membranes based on polyethylene (PE) and polypropylene (PP) are generally utilized as the separator...

주제어

참고문헌 (38)

  1. P. Arora and Z. Zhang, "Battery separators", Chem. Rev., 104, 4419 (2004). 

  2. T.-W. Zhang, T. Tian, B. Shen, Y.-H. Song, and H.-B. Yao, "Recent advances on biopolymer fiber-based membranes for lithium-ion battery separators", Compos. Commun., 14, 7 (2019). 

  3. H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, "A review of recent developments in membrane separators for rechargeable lithium-ion batteries", Energy Environ. Sci., 7, 3857 (2014). 

  4. Y. Li, Q. Li, and Z. Tan, "A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries", J. Power Sources, 443, 227262 (2019). 

  5. J. K. Koo and Y. S. Choo, "Preparation of porous separators for Zn air batteries through phase inversions of polyethersulfone-PVP solutions", Membr. J., 24, 10 (2014). 

  6. J. H. Lee, C. H. Park, M. S. Park, and J. H. Kim, "Poly(vinyl alcohol)-based polymer electrolyte membrane for solid-state supercapacitor", Membr. J., 29, 30 (2019). 

  7. J. H. Kim and S. Y. Lee, "Current status and future research directions of separator membranes for lithium-ion rechargeable batteries", Membr. J., 26, 337 (2016). 

  8. Y. T. Jeong, J. Ahn, and C. H. Lee, "Preparation and characterization of sulfonated poly (arylene ether sulfone) random copolymer-polyolefin pore-filling separators with metal ion trap capability for li-ion secondary battery", Membr. J., 26, 310 (2016). 

  9. Y. H. Park and S. Y. Nam, "Characterization of polyolefin separator support membranes with hydrophilic coatings", Membr. J., 27, 92 (2017). 

  10. H. Wu, D. Zhuo, D. Kong, and Y. Cui, "Improving battery safety by early detection of internal shorting with a bifunctional separator", Nat. Commun., 5, 5193 (2014). 

  11. S. Bai, X. Liu, K. Zhu, S. Wu, and H. Zhou, "Metal-organic framework-based separator for lithium-sulfur batteries", Nat. Energy, 1, 16094 (2016). 

  12. M. F. Lagadec, R. Zahn, and V. Wood, "Characterization and performance evaluation of lithium-ion battery separators", Nat. Energy, 4, 16 (2019). 

  13. M. Waqas, S. Ali, C. Feng, D. Chen, J. Han, and W. He, "Recent development in separators for high-temperature lithium-ion batteries", Small, 15, 1901689 (2019). 

  14. J. B. Goodenough and K.-S. Park, "The li-ion rechargeable battery: A perspective", J. Am. Chem. Soc., 135, 1167 (2013). 

  15. T. Lee, W. K. Kim, Y. Lee, M. H. Ryou, and Y. M. Lee, "Effect of $Al_2O_3$ coatings prepared by RF sputtering on polyethylene separators for high-power lithium ion batteries", Macromol. Res., 22, 1190 (2014). 

  16. D. Djian, F. Alloin, S. Martinet, H. Lignier, and J. Y. Sanchez, "Lithium-ion batteries with high charge rate capacity: Influence of the porous separator", J. Power Sources, 172, 416 (2007). 

  17. Q. Xu, Q. Kong, Z. Liu, X. Wang, R. Liu, J. Zhang, L. Yue, Y. Duan, and G. Cui, "Cellulose/polysulfonamide composite membrane as a high performance lithium-ion battery separator", ACS Sustain. Chem. Eng., 2, 194 (2014). 

  18. T. H. Cho, M. Tanaka, H. Ohnishi, Y. Kondo, M. Yoshikazu, T. Nakamura, and T. Sakai, "Composite nonwoven separator for lithium-ion battery: Development and characterization", J. Power Sources, 195, 4272 (2010). 

  19. G. Dong, B. Liu, G. Sun, G. Tian, S. Qi, and D. Wu, " $TiO_2$ nanoshell@polyimide nanofiber membrane prepared via a surface-alkaline-etching and in-situ complexation-hydrolysis strategy for advanced and safe LIB separator", J. Membr. Sci., 577, 249 (2019). 

  20. J. Lee, C. L. Lee, K. Park, and I. D. Kim, "Synthesis of an $Al_2O_3$ -coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries", J. Power Sources, 248, 1211 (2014). 

  21. Y. E. Miao, G. N. Zhu, H. Hou, Y. Y. Xia, and T. Liu, "Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries", J. Power Sources, 226, 82 (2013). 

  22. N. Sabetzadeh, A. A. Gharehaghaji, and M. Javanbakht, "Porous PAN micro/nanofiber membranes with potential application as lithium-ion battery separators: Physical, morphological and thermal properties", J. Polym. Res., 26, 20 (2019). 

  23. C. Zhu, J. Zhang, J. Xu, X. Yin, J. Wu, S. Chen, Z. Zhu, L. Wang, and H. Wang, "Aramid nanofibers/polyphenylene sulfide nonwoven composite separator fabricated through a facile papermaking method for lithium ion battery", J. Membr. Sci., 588, 117169 (2019). 

  24. G. Zainab, X. Wang, J. Yu, Y. Zhai, A. Ahmed Babar, K. Xiao, and B. Ding, "Electrospun polyacrylonitrile/polyurethane composite nanofibrous separator with electrochemical performance for high power lithium ion batteries", Mater. Chem. Phys., 182, 308 (2016). 

  25. M. Xia, Q. Liu, Z. Zhou, Y. Tao, M. Li, K. Liu, Z. Wu, and D. Wang, "A novel hierarchically structured and highly hydrophilic poly(vinyl alcohol-co-ethylene)/poly(ethylene terephthalate) nanoporous membrane for lithium-ion battery separator", J. Power Sources, 266, 29 (2014). 

  26. H. S. Jeong, D. W. Kim, Y. U. Jeong, and S. Y. Lee, "Effect of phase inversion on microporous structure development of $Al_2O_3$ /poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries", J. Power Sources, 195, 6116 (2010). 

  27. H. S. Jeong and S. Y. Lee, "Closely packed $SiO_2$ nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries", J. Power Sources, 196, 6716 (2011). 

  28. W. Chen, Y. Liu, Y. Ma, and W. Yang, "Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of $TiO_2$ -(2-hydroxyethyl methacrylate)", J. Power Sources, 273, 1127 (2015). 

  29. L. Wang, Z. Wang, Y. Sun, X. Liang, and H. Xiang, " $Sb_2O_3$ modified PVDF-CTFE electrospun fibrous membrane as a safe lithium-ion battery separator", J. Membr. Sci., 572, 512 (2019). 

  30. D. Wu, J. He, M. Zhang, P. Ni, X. Li, and J. Hu, "Fabrication of a novel sandwich-like composite separator with enhanced physical and electrochemical performances for lithium-ion battery", J. Power Sources, 290, 53 (2015). 

  31. R. Luo, C. Wang, Z. Zhang, W. Lv, Z. Wei, Y. Zhang, X. Luo, and W. He, "Three-dimensional nanoporous polyethylene-reinforced PVDF-HFP separator enabled by dual-solvent hierarchical gas liberation for ultrahigh-rate lithium ion batteries", ACS Appl. Energy Mater., 1, 921 (2018). 

  32. G. Ding, B. Qin, Z. Liu, J. Zhang, B. Zhang, P. Hu, C. Zhang, G. Xu, J. Yao, and G. Cui, "A polyborate coated cellulose composite separator for high performance lithium ion batteries", J. Electrochem. Soc., 162, A834 (2015). 

  33. L. Zhang, G. Feng, X. Li, S. Cui, S. Ying, X. Feng, L. Mi, and W. Chen, "Synergism of surface group transfer and in-situ growth of silica-aerogel induced high-performance modified polyacrylo- nitrile separator for lithium/sodium-ion batteries", J. Membr. Sci., 577, 137 (2019). 

  34. X. Zhou, L. Yue, J. Zhang, Q. Kong, Z. Liu, J. Yao, and G. Cui, "A core-shell structured polysulfonamide-based composite nonwoven towards high power lithium ion battery separator", J. Electrochem. Soc., 160, A1341 (2013). 

  35. C. Shi, J. Dai, S. Huang, C. Li, X. Shen, P. Zhang, D. Wu, D. Sun, and J. Zhao, "A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries", J. Membr. Sci., 518, 168 (2016). 

  36. Z. Wei, J. Gu, F. Zhang, Z. Pan, and Y. Zhao, "Core-shell structured nanofibers for lithium ion battery separator with wide shutdown temperature window and stable electrochemical performance", ACS Appl. Polym. Mater., 2, 1989 (2020). 

  37. L. Yue, J. Zhang, Z. Liu, Q. Kong, X. Zhou, Q. Xu, J. Yao, and G. Cui, "A heat resistant and flame-retardant polysulfonamide/polypropylene composite nonwoven for high performance lithium ion battery separator", J. Electrochem. Soc., 161, A1032 (2014). 

  38. J. Liu, Y. Mo, S. Wang, S. Ren, D. Han, M. Xiao, L. Sun, and Y. Meng, "Ultrastrong and heat-resistant poly(ether ether ketone) separator for dendrite-proof and heat-resistant lithium-ion batteries", ACS Appl. Energy Mater., 2, 3886 (2019). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로